精英家教网 > 高中数学 > 题目详情

已知数列中,,前项的和为,对任意的总成等差数列.
(1)求的值并猜想数列的通项公式
(2)证明:.

(1)
(2)

解析试题分析:(1)总成等差数列,所以有,令,令,令            4分
由已知可得
所以) ,从第二项开始构成等比数列,公比为
      8分
(2)              12分
考点:数列求通项求和
点评:本题已知条件主要是关于的关系式,由此求通项时借助于
此外第二小题还可借助于第一问的结论,结合数学归纳法猜想并证明

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设等差数列的公差,等比数列公比为,且
(1)求等比数列的公比的值;
(2)将数列中的公共项按由小到大的顺序排列组成一个新的数列,是否存在正整数(其中)使得都构成等差数列?若存在,求出一组的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列满足),是常数.
(Ⅰ)当时,求的值;
(Ⅱ)数列是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,点在函数的图象上,其中
(1)证明:数列是等比数列,并求数列的通项公式;
(2)记,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

下图是一个按照某种规律排列出来的三角形数阵

假设第行的第二个数为
(1)依次写出第六行的所有6个数字(不必说明理由);
(2)写出的递推关系(不必证明),并求出的通项公式
(3)设,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)设正项数列的前项和,且满足.
(Ⅰ)计算的值,猜想的通项公式,并证明你的结论;
(Ⅱ)设是数列的前项和,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列具有性质:①为整数;②对于任意的正整数,当为偶数时,
;当为奇数时,.
(1)若为偶数,且成等差数列,求的值;
(2)设(N),数列的前项和为,求证:
(3)若为正整数,求证:当(N)时,都有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设曲线上的点到点的距离的最小值为,若,,
(1)求数列的通项公式;
(2)求证:
(3)是否存在常数,使得对,都有不等式:成立?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知数列的前n项和,且与1的等差中项。
(1)求数列和数列的通项公式;
(2)若,求
(3)若,是否存在,使得并说明理由。

查看答案和解析>>

同步练习册答案