精英家教网 > 高中数学 > 题目详情

【题目】在五面体中, ,平面平面..

(1)证明:直线平面

(2)已知为棱上的点,试确定点位置,使二面角的大小为.

【答案】(1)见解析;(2)点靠近点的的三等分点处.

【解析】试题分析:证明一条直线垂直一个平面,只需要证明这条两个平面垂直,直线垂直两个平面的交线即可。证明,因为平面平面,平面平面 ,即可得到直线平面

根据题意,取的中点,证明 两两垂直,以为原点, 轴,建立空间直角坐标系,进行计算,确定点靠近点的的三等分点处

解析:(1)证明:∵,∴

∴四边形为菱形,∴

∵平面平面,平面平面

,∴平面

,又∵

∴直线平面.

(2)∵,∴为正三角形,

的中点,连接,则,∴

∵平面平面 平面,平面平面

平面

,∴ 两两垂直,

为原点, 轴,建立空间直角坐标系,如图,

.

由(1)知是平面的法向量,

,则.

设平面的法向量为

,∴

,则 ,∴

∵二面角

,解得.

点靠近点的的三等分点处.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线与曲线,(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.

1)写出曲线的极坐标方程;

2)在极坐标系中,已知的公共点分别为,当时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若.则该双曲线的离心率为

A. 2B. 3C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市房产中心数据研究显示,2018年该市新建住宅销售均价如下表.3月至7月房价上涨过快,为抑制房价过快上涨,政府从8月份开始出台了相关限购政策,10月份开始房价得到了很好的抑制.

均价(万元/

0.95

0.98

1.11

1.12

1.20

1.22

1.32

1.34

1.16

1.06

月份

3

4

5

6

7

8

9

10

11

12

(Ⅰ)请建立3月至7月线性回归模型(保留小数点后3位),并预测若政府不宏观调控,12月份该市新建住宅销售均价;

(Ⅱ)试用相关系数说明3月至7月各月均价(万元/)与月份之间可用线性回归模型(保留小数点后2位)

参考数据:

回归方程斜率和截距最小二乘法估计公式

相关系数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求函数的极小值;

(2)求证:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为2,直线被椭圆截得的线段长为为坐标原点.

1)求椭圆的方程;

2)是否存在过点且斜率为的直线,与椭圆交于两点时,作线段的垂直平分线分别交轴、轴于,垂足为,使得的面积相等,若存在,试求出直线的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年,新冠状肺炎疫情牵动每一个中国人的心,危难时刻众志成城,共克时艰,为疫区助力.福建省漳州市东山县共101个海鲜商家及个人为缓解武汉物质压力,募捐价值百万的海鲜输送武汉.东山岛,别称陵岛,形似蝴蝶亦称蝶岛,隶属于福建省漳州市东山县,是福建省第二大岛,中国第七大岛,介于厦门市和广东省汕头之间,东南是著名的闽南渔场和粤东渔场交汇处,因地理位置发展海产品养殖业具有得天独厚的优势.根据养殖规模与以往的养殖经验,某海鲜商家的海产品每只质量(克)在正常环境下服从正态分布

1)随机购买10只该商家的海产品,求至少买到一只质量小于265克该海产品的概率;

22020年该商家考虑增加先进养殖技术投入,该商家欲预测先进养殖技术投入为49千元时的年收益增量.现用以往的先进养殖技术投入(千元)与年收益增量(千元).的数据绘制散点图,由散点图的样本点分布,可以认为样本点集中在曲线的附近,且,其中.根据所给的统计量,求y关于x的回归方程,并预测先进养殖技术投入为49千元时的年收益增量.

附:若随机变量,则;

对于一组数据,其回归线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的参数方程为为参数),直线经过点且倾斜角为.

1)求曲线的极坐标方程和直线的参数方程;

2)已知直线与曲线交于,满足的中点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)求不等式的解集;

2)若关于的不等式在实数范围内解集为空集,求实数的取值范围.

查看答案和解析>>

同步练习册答案