精英家教网 > 高中数学 > 题目详情
(1)已知全集U=R,集合M={x|
x+3
≤0},N={x|x2=x+12},求(∁UM)∩N;
(2)已知全集U=R,集合A={x|x<-1或x>1},B={x|-1≤x<0},求A∪(∁UB).
考点:交、并、补集的混合运算
专题:集合
分析:(1)求出M中不等式的解集确定出M,求出N中方程的解确定出N,找出M补集与N的交集即可;
(2)由全集U=R,求出B的补集,找出A与B补集的并集即可.
解答: 解:(1)∵M={x|x+3=0}={-3},N={x|x2=x+12}={-3,4},
∴∁UM={x|x≠-3},
∴(∁UM)∩N={4};
(2)∵A={x|x<-1或x>1},B={x|-1≤x<0},
∴∁UB={x|x<-1或x≥0},
∴A∪(∁UB)={x|x<-1或x≥0}.
点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
(3a-2)x+6a-1,x<1
ax,x≥1
在(-∞,+∞)上单调递减,则实数a的取值范围是(  )
A、(0,1)
B、(0,
2
3
C、[
3
8
2
3
D、[
3
8
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

求值:2log52+log5
5
4
+loge
e
+3
1
2
×
3
4
×21-log23

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=
(5-m)x+1,(x≤0)
mx+m-1,(x>0)
,若f(x)在(-∞,+∞)上单调递增,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域是[0,1],则函数f(x2)的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,集合A={x|x<-2,或x>0},B={x|
1
x
<1},则(∁UA)∩B=(  )
A、(-2,0)B、[-2,0)
C、∅D、(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x+1<0},B={x|x-3<0},那么集合A∪B等于(  )
A、{x|x<-3}
B、{x|x<3}
C、{x|x<-1}
D、{x|-1<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,且该椭圆上一点A与左、右焦点F1,F2构成的三角形周长为2
2
+2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)记椭圆C的上顶点为B,直线l交椭圆C于P,Q两点,问:是否存在直线l,使椭圆C的右焦点F2恰为△PQB的垂心(△PQB三条边上的高线的交点)?若存在,求出直线l的方程,若不存在,请说明理由.
(Ⅲ)若⊙M是以AF2为直径的圆,求证:⊙M与以坐标原点为圆心,a为半径的圆相内切.

查看答案和解析>>

科目:高中数学 来源: 题型:

构造如图所示的数表,规则如下:先排两个l作为第一层,然后在每一层的相邻两个数之间插入这两个数和的a倍得下一层,其中a∈(0,
1
3
),设第n层中有an个数,这an个数的和为Sn(n∈N*).
(I)求an
(Ⅱ)证明:
n
2
a1-1
S1
+
a2-1
S2
+…+
an-1
Sn
<(
2
a+1
)n
-1.

查看答案和解析>>

同步练习册答案