精英家教网 > 高中数学 > 题目详情
等比数列{an}中,已知a9=-2,则此数列前17项之积为( )
A.216
B.-216
C.217
D.-217
【答案】分析:利用等比数列的性质得出a1•a17=a2•a16=…=a8•a10=a29,从而得出即可求出结果.
解答:解:s17=a1•a2•a3•…a16•a17=(a1•a17)•(a2•a16)•…•(a8•a10)•a9=a917=-217
故选D

点评:本题考查了等比数列的性质,解题的关键是s17=(a1•a17)•(a2•a16)•…•(a8•a10)•a9=a917
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等比数列{an}中,a2=18,a4=8,则公比q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a1=0,an+1=
1
2-an

(Ⅰ)求数列{an}的通项公式an
(Ⅱ)设数列{an}的前n项和为Sn,证明:Sn<n-ln(n+1);
(Ⅲ)设bn=an
9
10
n,证明:对任意的正整数n、m,均有|bn-bm|<
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a3=2,a7=32,则a5=
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,an=2×3n-1,则由此数列的奇数项所组成的新数列的前n项和为
9n-1
4
9n-1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,已知对n∈N*有a1+a2+…+an=2n-1,那么
a
2
1
+
a
2
2
+…+
a
2
n
等于(  )

查看答案和解析>>

同步练习册答案