【题目】函数的定义域为,并满足以下条件:①对任意,有;②对任意,有;③.
(Ⅰ)求的值;
(Ⅱ)求证:在上是单调增函数;
(Ⅲ)若,且,求证:.
科目:高中数学 来源: 题型:
【题目】椭圆规是用来画椭圆的一种器械,它的构造如图所示,在一个十字形的金属板上有两条互相垂直的导槽,在直尺上有两个固定的滑块A,B,它们可分别在纵槽和横槽中滑动,在直尺上的点M处用套管装上铅笔,使直尺转动一周,则点M的轨迹C是一个椭圆,其中|MA|=2,|MB|=1,如图,以两条导槽的交点为原点O,横槽所在直线为x轴,建立直角坐标系.
(1)将以射线Bx为始边,射线BM为终边的角xBM记为φ(0≤φ<2π),用表示点M的坐标,并求出C的普通方程;
(2)已知过C的左焦点F,且倾斜角为α(0≤α)的直线l1与C交于D,E两点,过点F且垂直于l1的直线l2与C交于G,H两点.当,|GH|,依次成等差数列时,求直线l2的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】全国文明城市是中国所有城市品牌中含金量最高、创建难度最大的一个,是反映城市整体文明水平的综合性荣誉称号,是目前国内城市综合类评比中的最高荣誉,也是最具价值的城市品牌,作为普通市民,既是城市文明的最大受益者,更是文明城市的主要创造者,皖北某市为提高市民对文明城市创建的认识,举办了“创建文明城市”知识竞赛,从所有答卷中随机抽取400份试卷作为样本,将样本的成绩(满分100分,成绩均为不低于40分的整数)分成六段:后得到如图所示的频率分布直方图.
(Ⅰ)求样本的平均数;
(Ⅱ)现从该样本成绩在与两个分数段内的市民中按分层抽样选取6人,求从这6人中随机选取2人,且2人的竞赛成绩之差的绝对值大于20的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了对某种商品进行合理定价,需了解该商品的月销售量(单位:万件)与月销售单价(单位:元/件)之间的关系,对近个月的月销售量和月销售单价数据进行了统计分析,得到一组检测数据如表所示:
月销售单价(元/件) | ||||||
月销售量(万件) |
(1)若用线性回归模型拟合与之间的关系,现有甲、乙、丙三位实习员工求得回归直线方程分别为:,和,其中有且仅有一位实习员工的计算结果是正确的.请结合统计学的相关知识,判断哪位实习员工的计算结果是正确的,并说明理由;
(2)若用模型拟合与之间的关系,可得回归方程为,经计算该模型和(1)中正确的线性回归模型的相关指数分别为和,请用说明哪个回归模型的拟合效果更好;
(3)已知该商品的月销售额为(单位:万元),利用(2)中的结果回答问题:当月销售单价为何值时,商品的月销售额预报值最大?(精确到)
参考数据:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,椭圆左、右焦点分别为,,离心率为,两准线间距离为8,圆O的直径为,直线l与圆O相切于第四象限点T,与y轴交于M点,与椭圆C交于点N(N点在T点上方),且.
(1)求椭圆C的标准方程;
(2)求直线l的方程;
(3)求直线l上满足到,距离之和为的所有点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】斐波拉契数列,指的是这样一个数列:1,1,2,3,5,8,13,21,…,在数学上,斐波拉契数列{an}定义如下:a1=a2=1,an=an﹣1+an﹣2(n≥3,n∈N),随着n的增大,越来越逼近黄金分割0.618,故此数列也称黄金分割数列,而以an+1、an为长和宽的长方形称为“最美长方形”,已知某“最美长方形”的面积约为200平方厘米,则该长方形的长大约是( )
A.20厘米B.19厘米C.18厘米D.17厘米
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x﹣1)2﹣alnx(a<0).
(1)讨论f(x)的单调性;
(2)若f(x)存在两个极值点x1,x2(x1<x2),且关于x的方程f(x)=b(b∈R)恰有三个实数根x3,x4,x5(x3<x4<x5),求证:2(x2﹣x1)>x5﹣x3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:()的焦点为F,过F且斜率为1的直线与C交于A,B两点,.
(1)求C的方程;
(2)过点的直线l交C于点M,N,点Q为的中点,轴交C于点R,且,证明:动点T在定直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为调查中学生平均每人每天参加体育锻炼的时间(单位:),按锻炼时间分下列四种情况统计:(1);(2);(3);(4)以上,有10000名中学生参加了此项活动,下图是此次调查中某一项的流程图,若平均每天参加体育锻炼的时间在的学生频率是0.15,则输出的结果为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com