精英家教网 > 高中数学 > 题目详情

某市规定,高中学生三年在校期间参加不少于小时的社区服务才合格.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段
(单位:小时)进行统计,其频率分布直方图如图所示.
(Ⅰ)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计
从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;
(Ⅱ)从全市高中学生(人数很多)中任意选取3位学生,记为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量的分布列和数学期望

(Ⅰ)(Ⅱ)


0
1
2
3





 

解析试题分析:(Ⅰ)根据频率分布直方图中小长方形面积为频率,而频数为总数与频率之积. 因此参加社区服务时间在时间段小时的学生人数为(人),参加社区服务时间在时间段小时的学生人数为(人).所以抽取的200位学生中,参加社区服务时间不少于90小时的学生人数为人.概率估计为(Ⅱ)随机变量的可能取值为.由(Ⅰ)可知,概率为因为 ~,所以.随机变量的分布列为


0
1
2
3





 
解:(Ⅰ)根据题意,
参加社区服务时间在时间段小时的学生人数为(人),
参加社区服务时间在时间段小时的学生人数为(人).
所以抽取的200位学生中,参加社区服务时间不少于90小时的学生人数为人.
所以从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的
概率估计为                         5分
(Ⅱ)由(Ⅰ)可知,从全市高中生中任意选取1人,其参加社区服务时间不少于90小时的概率为
由已知得,随机变量的可能取值为
所以



随机变量的分布列为

0
1
2
3



练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:

将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;
(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望及方差.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

以下茎叶图记录了甲,乙两组各三名同学在期末考试中的数学成绩(十位数字为茎,个位数字为叶).乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以表示.
(1)若甲,乙两个小组的数学平均成绩相同,求的值;
(2)当时,分别从甲,乙两组同学中各随机选取一名同学,求这两名同学的数学成绩之差的绝对值不超过2分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某学校为调查高一新生上学路程所需要的时间(单位:分钟),从高一年级新生中随机抽取100名新生按上学所需时间分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.

(1)根据图中数据求的值
(2)若从第3,4,5组中用分层抽样的方法抽取6名新生参与交通安全问卷调查,应从第3,4,5组
各抽取多少名新生?
(3)在(2)的条件下,该校决定从这6名新生中随机抽取2名新生参加交通安全宣传活动,求第4组至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某种产品的广告费支出x(单位:百万元)与销售额y(单位:百万元)之间有如下对应数据:

x
2
4
5
6
8
y
30
40
60
50
70
 
(1)画出散点图;
(2)求y关于x的线性回归方程.
可能用到公式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在对某渔业产品的质量调研中,从甲,乙两地出产的该产品中各随机抽取10件,测量该产品中某种元素的含量(单位:毫克).
下表是测量数据的茎叶图:
规定:当产品中的此种元素含量毫克时为优质品.

(1)试用上述样本数据估计甲,乙两地该产品的优质品率(优质品件数/总件数);
(2)从乙地抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优质品数的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两名运动员参加“选拔测试赛”,在相同条件下,两人5次测试的成绩(单位:分)记录如下:
甲  86   77   92   72   78
乙  78   82   88   82   95
(1)用茎叶图表示这两组数据;.
(2)现要从中选派一名运动员参加比赛,你认为选派谁参赛更好?说明理由(不用计算);
(3)若从甲、乙两人的5次成绩中各随机抽取一个,求甲的成绩比乙高的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:

日期
12月1日
12月2日
12月3日
12月4日
12月5日
温差x/℃
10
11
13
12
8
发芽数y
/颗
23
25
30
26
16
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程=bx+a;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

 
喜爱打篮球
不喜爱打篮球
合计
男生
 
5
 
女生
10
 
 
合计
 
 
50
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,还喜欢打羽毛球,还喜欢打乒乓球,还喜欢踢足球,现在从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的8位女生中各选出1名进行其他方面的调查,求不全被选中的概率.
下面的临界值表供参考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
(参考公式:

查看答案和解析>>

同步练习册答案