【题目】某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆O及其内接等腰三角形绕底边上的高所在直线旋转而成,如图2.已知圆O的半径为,设,,圆锥的侧面积为(S圆锥的侧面积(R-底面圆半径,I-母线长))
(1)求S关于的函数关系式;
(2)为了达到最佳观赏效果,要求圆锥的侧面积S最大.求S取得最大值时腰的长度
【答案】(1),();(2)
【解析】
(1)根据题意,设交于点,过作,垂足为,分析可得,,由圆锥的侧面积公式可得的表达式,即可得答案;
(2)由(1)可得的表达式可得,设,,求导求出其在区间上的最大值,求出的值,即可得当,即时,侧面积取得最大值,计算即可得答案.
解:(1)根据题意,设交于点D,过O作,垂足为E,
在中,,,
在中,,
所以,().
(2)由(1)得:,
设,(),
则,令,可得,
当时,,函数在区间上单调递增,
当时,,函数在区间上单调递减,
所以在时取得极大值,也是最大值;
所以当,即时,侧面积S取得最大值,
此时等腰三角形的腰长;
答:侧面积S取得最大值时,等腰三角形的腰的长度为.
科目:高中数学 来源: 题型:
【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图.根据该折线图,下列结论错误的是( )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数(其中)的部分图象如图所示,把函数的图像向右平移个单位长度,再向下平移个单位,得到函数的图像。
(1)当时,若方程恰好有两个不同的根,求的取值范围及的值;
(2)令,若对任意都有恒成立,求的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数的图象如图所示,为了得到函数的图象,可以把函数的图象( )
A.先向左平移个单位,再把所得各点的横坐标伸长到原来的倍(纵坐标不变)
B.先向左平移个单位,再把所得各点的横坐标缩短到原来的(纵坐标不变)
C.每个点的横坐标缩短到原来的(纵坐标不变),再向左平移个单位
D.每个点的横坐标伸长到原来的倍(纵坐标不变),再向左平移个单位
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加,下表是某购物网站2018年1-8月促销费用(万元)和产品销量(万件)的具体数据:
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
促销费用 | 2 | 3 | 6 | 10 | 13 | 21 | 15 | 18 |
产品销量 | 1 | 1 | 2 | 3 | 3.5 | 5 | 4 | 4.5 |
(1)根据数据绘制的散点图能够看出可用线性回归模型与的关系,请用相关系数加以说明(系数精确到0.001);
(2)建立关于的线性回归方程(系数精确到0.001);如果该公司计划在9月份实现产品销量超6万件,预测至少需要投入费用多少万元(结果精确到0.01).
参考数据:,,,,,其中,分别为第个月的促销费用和产品销量,.
参考公式:(1)样本相关系数;
(2)对于一组数据,,…,,其回归方程的斜率和截距的最小二乘估计分别为,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我校高一年级某研究小组经过调查发现:提高北环隧道的车辆通行能力可有效改善交通状况,在一般情况下,隧道内的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米,车流密度指每千米道路上车辆的数量)的函数.当隧道内的车流密度达到210辆/千米时,将造成堵塞,此时车流速度为0;当车流密度不超过30辆/千米时,车流速度为60千米/小时,研究表明:当时,车流速度是车流密度的一次函数.
(1)求函数的表达式;
(2)当车流密度为多大时,车流量(单位时间内通过某观测点的车辆数,单位:辆/小时) 可以达到最大,并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.
(Ⅰ)证明: BC1//平面A1CD;
(Ⅱ)设AA1= AC=CB=2,AB=2,求三棱锥C一A1DE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知边长为4的正三角形ABC的边AB、AC上分别有两点D、E,DE//BC且DE=3,现将△ABC沿DE折成直二面角A﹣DE﹣B,在空间中取一点F使得ADBF为平行四边形,连接AC、FC得六面体ABCEDF,G是BC边上动点.
(1)若EG//平面ACF,求CG的长;
(2)若G为BC中点,求二面角G﹣AE﹣D的平面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com