精英家教网 > 高中数学 > 题目详情
(1+2x3(1-x)4展开式中x2的系数为            .

-6解析:展开式中含x2的项m=·13·(2x)0··12·(-x)2+·12(2x)1··13·(-x)1+11(2x)2·

14(-x)0

=6x2-24x2+12x2

=展开式中x2的系数为-6x2,

∴系数为-6.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

我们规定:对于任意实数A,若存在数列{an}和实数x(x≠0),使得A=a1+a2x+a3x2+…anxn-1,则称数A可以表示成x进制形式,简记为A=
.
x~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2~(-1)(3)(-2)(1)
,则表示A是一个2进制形式的数,且A=-1+3×2+(-2)×22+1×23=5.
(I)已知m=(1-2x)(1+3x2)(其中x≠0),试将m表示成x进制的简记形式;
(II)记bn=
.
2~(a1)(a2)(a3)…(an-1)(an)
(n∈N*)
,若{an}是等差数列,且满足a1+a2=3,a3+a4=7,求bn=9217时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

A.已知方程|2x-1|-|2x+1|=a+1有实数解,则a的取值范围为
[-3,-1)
[-3,-1)

B.如图,四边形ABCD内接于⊙O,BC是直径,MN切⊙O于A,∠MAB=25,则∠D=
115°
115°

C.设曲线C的参数方程为
x=2+3cosθ
y=-1+3sinθ
(θ为参数),直线l的参数方程为
x=1+2t
y=1+t
(t为参数),则直线l被曲线C截得的弦长为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区模拟)我们规定:对于任意实数A,若存在数列{an}和实数x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,则称数A可以表示成x进制形式,简记为:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,则表示A是一个2进制形式的数,且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0),试将m表示成x进制的简记形式.
(2)若数列{an}满足a1=2,ak+1=
1
1-ak
,k∈N*
bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*),是否存在实常数p和q,对于任意的n∈N*,bn=p•8n+q总成立?若存在,求出p和q;若不存在,说明理由.
(3)若常数t满足t≠0且t>-1,dn=
.
t\~(
C
1
n
)(
C
2
n
)(
C
3
n
)…(
C
n-1
n
)(
C
n
n
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南省岳阳一中高三(上)第四次月考数学试卷(文科)(解析版) 题型:选择题

若集合A={x|-1≤2x+1≤3},,则A∩B=( )
A.{x|-1≤x<0}
B.{x|0<x≤1}
C.{x|0≤x≤2}
D.{x|0≤x≤1}

查看答案和解析>>

同步练习册答案