精英家教网 > 高中数学 > 题目详情
1.函数f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{\frac{1}{2}x+1,0<x<2}\\{-2x+6,x≥2}\end{array}\right.$.
(1)求f(-2),f(1),f(3)的值;
(2)在平面直角坐标系中画出函数y=f(x)的图象;
(3)根据图象求函数y=f(x)的最大值,并指出函数y=f(x)取得最大值时自变量x的值.

分析 (1)根据解析式的特点,代值计算即可,
(2)描点画图即可,
(2)结合图象可得答案.

解答 解:(1)由f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{\frac{1}{2}x+1,0<x<2}\\{-2x+6,x≥2}\end{array}\right.$,
∴f(-2)=-2+1=-1,f(1)=$\frac{1}{2}$+1=$\frac{3}{2}$,
f(3)=-2×3+6=0,
(2)其图象如图所示,
(3)根据图象函数y=f(x)的最大值为2,当x=2时,函数取得最大值.

点评 本题考查了函数的值,函数图象的画法和识别,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.如图是容量为200的样本的频率分布直方图,那么样本数据落在[10,14)内的频率,频数分别为(  )
A.0.32;  64B.0.32;  62C.0.36;  64D.0.36;  72

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=blnx.
(Ⅰ)当b=1时,若函数F(x)=f(x)+ax2-x在其定义域上为增函数,求a的取值范围;
(Ⅱ)若在[1,e]上存在x0,使得x0-f(x0)<-$\frac{1+b}{x_0}$成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在数列{an}中,a1=1,an+1=2an+1,则a10=(  )
A.1023B.1024C.1025D.511

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数$f(x)=\frac{1}{{{e^{|x|}}}}-{x^2}$,若$f({3^{a-1}})>f(-\frac{1}{9})$,则实数a的取值范围是(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)=$\left\{\begin{array}{l}{{x}^{2},x<0}\\{{2}^{x}-2,x≥0}\end{array}\right.$,则f(f(-2))=14.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.x+x-1=4,则${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}$=$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设Sn,Tn分别是等差数列{an},{bn}的前n项和,已知$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n+1}{4n-2}$(n∈N*),则$\frac{{a}_{10}}{{b}_{3}+{b}_{18}}$+$\frac{{a}_{11}}{{b}_{6}+{b}_{15}}$=$\frac{41}{78}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知二次函数f(x)=ax2+bx(a,b为常数且a≠0)满足条件f(-x+5)=f(x-3),且方程f(x)=x有两个相等的实数根.
(1)求f(x)的解析式;
(2)是否存在实数m,n (m<n),使f(x)的定义域和值域分别是[m,n]和[2m,2n]?如果存在,求出m,n的值; 如果不存在,说明理由.

查看答案和解析>>

同步练习册答案