精英家教网 > 高中数学 > 题目详情
设f(x)=sin(2x+
π
6
),则f(x)的图象的一条对称轴的方程是(  )
分析:可求得f(x)=sin(2x+
π
6
)的对称轴方程:x=
2
+
π
6
(k∈Z),对k取值判断即可.
解答:解:∵y=sinx的对称轴方程为:x=kπ+
π
2
(k∈Z),
∴由2x+
π
6
=kπ+
π
2
(k∈Z)得:x=
2
+
π
6
(k∈Z),
∴f(x)=sin(2x+
π
6
)的对称轴方程为:x=
2
+
π
6
(k∈Z),
∴当k=0时,x=
π
6
就是它的一条对称轴,
故选B.
点评:本题考查正弦函数的对称性,关键在于掌握正弦函数y=sinx的对称轴方程为:x=kπ+
π
2
(k∈Z),属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)求函数y=
log2
1
sinx
-1
的定义域.

(2)设f(x)=sin(cosx),(0≤x≤π),求f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中正确的是(  )
A、设f(x)=sin(2x+
π
3
),则?x∈(-
π
3
π
6
)
,必有f(x)<f(x+0.1)
B、?x0∈R.便得
1
2
sinx0+
3
2
cosx0>1
C、设f(x)=cos(x+
π
3
),则函数y=f(x+
π
6
)是奇函数
D、设f(x)=2sin2x,则f(x+
π
3
)=2sin(2x+
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=sin(x-sinx),x∈R.关于f(x)有以下结论:
①f(x)是奇函数;  
②f(x)的值域是[0,1];  
③f(x)是周期函数;
④x=π是函数y=f(x)图象的一条对称轴;  
⑤f(x)在[0,π]上是增函数.
其中正确结论的序号是
①③
①③

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•武汉模拟)设f(x)=sinπx是[0,1]上的函数,且定义f1(x)=f(x),…,fn(x)=f(fn-1(x)),n∈N*,则满足fn(x)=x,x∈[0,1]的x的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮北二模)设f(x)=sin(2x+φ),若f(x)≤f(
π
6
)对一切x∈R恒成立,则:
①f(-
π
12
)=0;
②f(x)的图象关于点(
12
,0)对称;
③f(x)既不是奇函数也不是偶函数;
④f(x)的单调递增区间是[kπ+
π
6
,kπ+
3
](k∈Z)
以上结论正确的是
①②③
①②③
(写出所有正确结论的编号).

查看答案和解析>>

同步练习册答案