精英家教网 > 高中数学 > 题目详情
4.已知m∈R,则函数f(x)=3x+m-2有零点的一个充分不必要条件为(  )
A.0<m<1B.m<2C.m<3D.0<m<3

分析 先求出函数f(x)=3x+m-2有零点的充分必要条件,结合集合的包含关系判断即可.

解答 解:若函数f(x)=3x+m-2=0有零点,
则m-2<0,解得:m<2,
m<2的一个充分不必要条件为:0<m<1,
故选:A.

点评 本题考察了充分必要条件,考察函数的零点问题,考察指数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若函数y=f(x)在x=a处的导数为A,则$\underset{lim}{△x→0}$$\frac{f(a+△x)-f(a-△x)}{△x}$为(  )
A.AB.2AC.$\frac{A}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图是某圆拱桥的示意图,这个圆拱桥的水面跨度AB=24m,拱高OP=8m.问:为使宽为10m的船能从桥下顺利通过,应如何限制船体及装载的货物在水面以上的高度?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数y=f(x)(x∈R)满足f(x+4)=f(x),且当x∈[0,4]时,f(x)=1-$\frac{1}{2}$|x-2|,那么函数f(x)的图象与函数g(x)=$\left\{\begin{array}{l}{lg|x|,x<0}\\{|lgx|,x>0}\end{array}\right.$的图象的交点个数共有(  )
A.12B.11C.10D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.当x=$\frac{π}{4}$时,函数f(x)=sin(x+φ)取得最小值,则函数y=f($\frac{3π}{4}$-x)的一个单调递增区间是(  )
A.(0,$\frac{π}{2}$)B.($\frac{π}{2}$,π)C.(-$\frac{π}{2}$,-$\frac{π}{4}$)D.($\frac{3π}{2}$,2π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义:离心率e=$\frac{\sqrt{5}-1}{2}$的椭圆为“黄金椭圆”,已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),e为椭圆E的离心率,则e2+e-1=0是椭圆E为“黄金椭圆”的(  )
A.充分不必要条件B.充要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合M={$\frac{1}{2}$,1,2,3,4},N={y|y=log2x,x∈M},则M∩N是(  )
A.{1,2}B.{1,4}C.{1}D.{2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列各表格中,不能看成y关于x的函数的是(  )
A.
 x 1 2 3
 y 2 4 6
B.
 x 1 2 3
 y 2 2 6
C.
 x 1 1 3
 y 2 4 6
D.
 1 2 
 y 2 4 6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.椭圆$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{4}$=1的焦点坐标是(  )
A.(0,±$\sqrt{5}$)B.(±$\sqrt{5}$,0)C.(0,±$\sqrt{13}$)D.(±$\sqrt{13}$,0)

查看答案和解析>>

同步练习册答案