精英家教网 > 高中数学 > 题目详情

【题目】某中学为弘扬优良传统,展示80年来的办学成果,特举办“建校80周年教育成果展示月”活动。现在需要招募活动开幕式的志愿者,在众多候选人中选取100名志愿者,为了在志愿者中选拔出节目主持人,现按身高分组,得到的频率分布表如图所示

(1)请补充频率分布表中空白位置相应数据,再在答题纸上完成下列频率分布直方图;

(2)为选拔出主持人,决定在第3、4、5组中用分层抽样抽取6人上台,求第3、4、5组每组各抽取多少人?

(3)在(2)的前提下,主持人会在上台的6人中随机抽取2人表演诗歌朗诵,求第3组至少有一人被抽取的概率?

【答案】(1)直方图见解析;(2)3,2,1;(3).

【解析】

(1)根第二组的频率计算第二组的频数,再根据总人数得到第三组的频数和频率,从而可补全频率分布表并制作频率分布直方图.

(2)按比例计算各组抽取人数.

(3)用枚举法列出所有的基本事件后用古典概型的概率公式计算即可.

第二组的频数为,故第三组的频数为,故第三组的频率为,第五组的频率为,补全后频率分布表为:

组号

分组

频数

频率

第一组

第二组

第三组

第四组

第五组

合计

100

1

频率分布直方图为:

(2)第三组、第四组、第五组的频率之比,故第三组、第四组、第五组抽取的人数分别为.

(3)设第三组中抽取的三人为,第四组中抽取的两人为,第五组中抽取的一人为,则6人中任意抽取两人,所有的基本事件如下

故第三组中至少有1人被抽取的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某化工厂为预测产品的回收率,需要研究它和原料有效成分含量之间的相关关系,现收集了4组对照数据。

3

4

5

6

2.5

3

4

4.5

(Ⅰ)请根据相关系数的大小判断回收率之间是否存在高度线性相关关系;

(Ⅱ)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程,并预测当时回收率的值.

参考数据:

1

0

其他

相关关系

完全相关

不相关

高度相关

低度相关

中度相关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若由方程x2y2=0和x2+(yb)2=2所组成的方程组至多有两组不同的实数解,则实数b的取值范围是(  )

A. b≥2b≤-2 B. b≥2或b≤-2

C. -2≤b≤2 D. -2b≤2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某二手交易市场对某型号的二手汽车的使用年数)与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:

使用年数

2

4

6

8

10

销售价格

16

13

9.5

7

4.5

(I)试求关于的回归直线方程.

(参考公式:

(II)已知每辆该型号汽车的收购价格为万元,根据(I)中所求的回归方程,预测为何值时,销售一辆该型号汽车所获得的利润最大?(利润=销售价格-收购价格)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某单位的职工食堂中,食堂每天以元/个的价格从面包店购进面包,然后以元/个的价格出售.如果当天卖不完,剩下的面包以元/个的价格全部卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了80个面包,以(单位:个)表示面包的需求量,(单位:元)表示利润.

(1)求关于的函数解析式;

(2)根据直方图估计利润不少于元的概率;

(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量,则取,且的概率等于需求量落入的频率),求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,一个长轴端点为,离心率,过P分别作斜率为的直线PAPB,交椭圆于点AB

1求椭圆的方程;

2,则直线AB是否经过某一定点?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率都为,现采用随机模拟的方法估计该运动员三次投篮都命中的概率:先由计算机产生0到9之间取整数值的随机数,指定1,2,3,4,5表示命中;6,7,8,9,0表示不命中,再以每三个随机数为一组,代表三次投篮的结果,经随机模拟产生了如下20组随机数:

162 966 151 525 271 932 592 408 569 683

471 257 333 027 554 488 730 163 537 989

据此估计,该运动员三次投篮都命中的概率为

A. 0.15 B. 0.2 C. 0.25 D. 0.35

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某冷饮店的经营状况,随机记录了该店月的月营业额(单位:万元)与月份的数据,如下表:

(1)求关于的回归直线方程

(2)若在这样本点中任取两点,求恰有一点在回归直线上的概率.

附:回归直线方程中,

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通常用分别表示的三个内角所对的边长,表示的外接圆半径.

1)如图,在以为圆心,半径为的圆中,是圆的弦,其中,角是锐角,求弦的长;

2)在中,若是钝角,求证:

3)给定三个正实数,其中,问满足怎样的关系时,以为边长,为外接圆半径的不存在、存在一个或存在两个(全等的三角形算作同一个)?在存在的情况下,用表示.

查看答案和解析>>

同步练习册答案