精英家教网 > 高中数学 > 题目详情

【题目】图是一几何体的平面展开图,其中四边形ABCD为正方形,EFGH分别为的中点,在此几何体中,给出下面五个结论:①平面平面ABCD;②平面BDG;③平面PBC;④平面BDG;⑤平面BDG.

其中正确结论的序号是________.

【答案】①②③④

【解析】

先把平面展开图还原为一个四棱锥,再根据直线与平面、平面与平面平行的判定定理判断即可.

先把平面展开图还原为一个四棱锥,如图所示:

EFGH分别为的中点

确定平面平面

平面平面

同理平面平面

平面平面,所以①正确;

②连接交于点,则中点,

中点,平面BDG

平面BDG ,平面BDG,所以②正确;

③同②同理可证平面PBC,所以③正确;

④同②同理可证平面BDG,所以④正确;

平面BDG相交,所以与平面BDG相交,

所以⑤不正确.

故答案为:①②③④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:

上年度出险次数

0

1

2

3

4

≥5

保费

0.85a

a

1.25a

1.5a

1.75a

2a

随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:

出险次数

0

1

2

3

4

≥5

频数

60

50

30

30

20

10

(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;

(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;

(3)求续保人本年度平均保费的估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)的最小值为1,且f0)=f2)=3

1)求fx)的解析式;

2)若fx)在区间[2aa+1]上不单调,求实数a的取值范围;

3)在区间[11]上,yfx)的图象恒在y2x+2m+1的图象上方,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美,定义:能够将圆的周长和面积同时等分成两个部分的函数称为圆的一个太极函数,则下列有关说法中:

①对于圆的所有非常数函数的太极函数中,都不能为偶函数;

②函数是圆的一个太极函数;

③直线所对应的函数一定是圆的太极函数;

④若函数是圆的太极函数,则

所有正确的是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数的单调区间;

2)若函数只有一个零点,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1,曲线C2

1)指出C1C2各是什么曲线,并说明C1C2公共点的个数;

2)若把C1C2上各点的纵坐标都压缩为原来的一半,分别得到曲线.写出的参数方程.公共点的个数和C1C2公共点的个数是否相同?说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,设函数

1)若函数的图象关于直线对称,且时,求函数的单调增区间;

2)在(1)的条件下,当时,函数有且只有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某新成立的汽车租赁公司今年年初用102万元购进一批新汽车,在使用期间每年有20万元的收入,并立即投入运营,计划第一年维修、保养费用1万元,从第二年开始,每年所需维修、保养费用比上一年增加1万元,该批汽车使用后同时该批汽车第年底可以以万元的价格出售.

(1)求该公司到第年底所得总利润(万元)关于(年)的函数解析式,并求其最大值;

(2)为使经济效益最大化,即年平均利润最大,该公司应在第几年底出售这批汽车?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为,(为参数),圆的标准方程为.以坐标原点为极点, 轴正半轴为极轴建立极坐标系.

(1)求直线和圆的极坐标方程;

(2)若射线与的交点为,与圆的交点为,且点恰好为线段的中点,求的值.

查看答案和解析>>

同步练习册答案