精英家教网 > 高中数学 > 题目详情

已知函数f(x)是奇函数,当x>0时,f(x)=x(1-x);当x<0时,f(x)等于


  1. A.
    -x(1+x)
  2. B.
    x(1+x)
  3. C.
    x(1-x)
  4. D.
    -x(1-x)
B
分析:要求x<0时的解析式,先设x<0,则-x>0,因为已知x>0时函数的解析式,所以可求出f(-x),再根据函数的奇偶性来求f(x)与f(-x)之间的关系可求
解答:设x<0,则-x>0,
∵当x>0时,f(x)=x(-x+1),
∴f(-x)=-x(x+1)
又∵f(x)是定义在R上的奇函数,
∴f(x)=-f(-x)=x(x+1)
故选B
点评:本题主要考查了已知函数当x>0的解析式,根据函数奇偶性求x<0的解析式,解题的关键是利用f(-x)=-f(x)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是奇函数,且在区间[1,2]上单调递减,则f(x)在区间[-2,-1]上是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是奇函数,函数g(x)=f(x-2)+3,那么g(x)的图象的对称中心的坐标是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是奇函数,且当x≥0时,f(x)=ln(x+1),则当x<0时,f(x)的解析式为
f(x)=-ln(-x+1)
f(x)=-ln(-x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是奇函数,且当x>0时,f(x)=x3+2x+1,则当x<0时,f(x)的解析式为
f(x)=x3+2x-1
f(x)=x3+2x-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是奇函数,f(x)的定义域为(-∞,+∞).当x<0时,f(x)=
ln(-ex)
x
.这里,e为自然对数的底数.
(1)若函数f(x)在区间(a,a+
1
3
)(a>0)
上存在极值点,求实数a的取值范围;
(2)如果当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围;
(3)试判断 ln
1
n+1
2(
1
2
+
2
3
+…+
n
n+1
)-n
的大小关系,这里n∈N*,并加以证明.

查看答案和解析>>

同步练习册答案