精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知点,从直线上一点P向圆引两条切线,切点分别为CD.设线段的中点为M,则线段长的最小值为______.

【答案】

【解析】

根据题意,求出直线的方程,设,分析可得点CD在以为直径的圆上,求出以OP为直径的圆的方程,分析可得所在直线方程为:,又由直线的方程,联立3个方程可得点M的轨迹方程,结合点与圆的位置关系分析可得答案.

解:根据题意,,则直线的方程为

,则,①,

如图:又由,则点CD在以为直径的圆上,

又由的中点即该圆圆心为,其半径为

则以为直径的圆的方程为

联立两圆的方程,可得所在直线方程为:

又由线段的中点为M,则直线,③

联立①②③消去,可得M的轨迹方程为

其圆心为,半径

又由,则的最大值为

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABC中,PA⊥底面ABCDAD∥BCAB=AD=AC=3PA=BC=4M为线段AD上一点,AM=2MDNPC的中点.

)证明MN∥平面PAB;

)求直线AN与平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过定点的动圆是与圆相内切.

(1)求动圆圆心的轨迹方程;

(2)设动圆圆心的轨迹为曲线是曲线上的两点,线段的垂直平分线过点,求面积的最大值(是坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知抛物线C:的焦点为F,过F的直线交抛物线C于A,B两点.

(1)求线段AF的中点M的轨迹方程;

(2)已知△AOB的面积是△BOF面积的3倍,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点Q是圆上的动点,点,若线段QN的垂直平分线MQ于点P.

(I)求动点P的轨迹E的方程

(II)若A是轨迹E的左顶点,过点D(-3,8)的直线l与轨迹E交于BC两点,求证:直线ABAC的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C,过焦点F的直线l与抛物线C交于MN两点.

1)若直线l的倾斜角为,求的长;

2)设M在准线上的射影为A,求证:AON三点共线(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题:①任意两条直线都可以确定一个平面;②若两个平面有3个不同的公共点,则这两个平面重合;③直线abc,若ab共面,bc共面,则ac共面;④若直线l上有一点在平面α外,则l在平面α.其中错误命题的个数是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是边长为2的菱形,且平面,点是线段上任意一点.

(1)证明:平面平面

(2)若的最大值是,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中, ,直角梯形通过直角梯形以直线为轴旋转得到,且使得平面平面 为线段的中点, 为线段上的动点.

)求证:

)当点满足时,求证:直线平面

)当点是线段中点时,求直线和平面所成角的正弦值.

查看答案和解析>>

同步练习册答案