精英家教网 > 高中数学 > 题目详情
12.已知数列{an}满足${a_1}=\frac{1}{3}$,${a_{n+1}}=\frac{a_n}{{2{a_n}+1}},n∈{N^*}$
(1)求a2,a3,a4
(2)是否存在正整数p,q使得对任意的n∈N*都有${a_n}=\frac{1}{pn+q}$,并用数学归纳法证明你的结论.

分析 (1)由数列{an}满足${a_1}=\frac{1}{3}$,${a_{n+1}}=\frac{a_n}{{2{a_n}+1}},n∈{N^*}$,可得a2=$\frac{{a}_{1}}{2{a}_{1}+1}$=$\frac{1}{5}$.同理可得:a3,a4
(2)假设存在正整数p,q使得对任意的n∈N*都有${a_n}=\frac{1}{pn+q}$,则a1=$\frac{1}{p+q}$=$\frac{1}{3}$,a2=$\frac{1}{2p+q}$=$\frac{1}{5}$,解得p=2,q=1.利用数学归纳法证明:${a}_{n}=\frac{1}{2n+1}$即可得出.

解答 解:(1)∵数列{an}满足${a_1}=\frac{1}{3}$,${a_{n+1}}=\frac{a_n}{{2{a_n}+1}},n∈{N^*}$,
∴a2=$\frac{{a}_{1}}{2{a}_{1}+1}$=$\frac{\frac{1}{3}}{2×\frac{1}{3}+1}$=$\frac{1}{5}$.
同理可得:a3=$\frac{1}{7}$,a4=$\frac{1}{9}$.
(2)假设存在正整数p,q使得对任意的n∈N*都有${a_n}=\frac{1}{pn+q}$,
则a1=$\frac{1}{p+q}$=$\frac{1}{3}$,a2=$\frac{1}{2p+q}$=$\frac{1}{5}$,
解得p=2,q=1.
下面利用数学归纳法证明:${a}_{n}=\frac{1}{2n+1}$.
①当n=1时,a1=$\frac{1}{2×1+1}$=$\frac{1}{3}$成立.
②假设n=k∈N*时成立,ak=$\frac{1}{2k+1}$.
则n=k+1时,ak+1=$\frac{{a}_{k}}{2{a}_{k}+1}$=$\frac{\frac{1}{2k+1}}{2×\frac{1}{2k+1}+1}$=$\frac{1}{2(k+1)+1}$,因此n=k+1时成立.
综上可得:对于?n∈N*时,${a}_{n}=\frac{1}{2n+1}$成立.

点评 本题考查了数列递推关系、数学归纳法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.下列函数中,既是偶函数,又在(0,$\frac{π}{2}$)上单调递减的是(  )
A.y=cosxB.y=sinxC.y=tanxD.y=ex

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若实数x,y满足xy=1,则x2+3y2的最小值为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设集合A={(x,y)|y=x+1,x∈R,y∈R},B={(x,y)|y=x2-1,x∈R,y∈R},则A∩B={(-1,0),(2,3)}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若x∈(-∞,2),则$\frac{{5-4x+{x^2}}}{2-x}$的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$f(x)=\left\{\begin{array}{l}{x^2}-3(x>0)\\ 1(x=0)\\ x+2(x<0)\end{array}\right.$,则f(f(f(-1)))=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.点A(-2,-2),B(-2,6),C(4,-2),点P在圆x2+y2=4上运动,则|PA|2+|PB|2+|PC|2的最大值,最小值分别为(  )
A.84,74B.88,72C.73,63D.88,62

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知在平面直角坐标系xoy中,直线l的参数方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t+4\sqrt{2}}\end{array}\right.$(t是参数),以原点O 为极点,O x为极轴建立极坐标系,圆C 的极坐标方程为$ρ=2cos(θ+\frac{π}{4})$.
(1)求直线l的普通方程和圆心C 的直角坐标;
(2)由直线l上的点向圆C引切线,求切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C的中心在原点,对称轴为坐标轴,左焦点为F1(-1,0),离心率为$\frac{1}{2}$.
(1)求椭圆C标准方程;
(2)分别以椭圆C的四个顶点作坐标轴的垂线,围成如图所示的矩形,A,B是所围成的矩形在x上方的两个顶点,若P,Q是椭圆C上两个动点,直线OP,OQ与椭圆的另外交点分别为P1,Q1,且直线OP,OQ的斜率之积等于直线OA,OB的斜率之积,试求四边形PQP1Q1的面积是否为定值,并说明理由.

查看答案和解析>>

同步练习册答案