【题目】某校从参加高一年级期末考试的学生中抽出40名学生,将其成绩分成六段[40,50),[50,60)…[90,100]后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:
(1)求第四小组的频率;
(2)估计这次考试的平均分和中位数(精确到0.01);
(3)从成绩是40~50分及90~100分的学生中选两人,记他们的成绩分别为,求满足“”的概率.
【答案】(1)0.3(2)平均分71,中位数73.33(3)
【解析】
(1)由频率分布直方图直接求出第4小组的频率.
(2)由频率分布直方图能估计平均分和中位数.
(3)设成绩满足“|x﹣y|≤10”为事件A,由频率分布直方图得成绩在[40,50)分的学生记为1,2,3,4,成绩在[90,100)分的学生记为a,b,将从成绩是40~50分及90~100分的学生中选两人的基本事件一一列出,从中找出事件A包含的基本事件,由此能求出满足“|x﹣y|≤10”的概率.
(1)由频率分布直方图可知
所以第4小组的频率为:a=1﹣0.1﹣0.15﹣0.15﹣0.25﹣0.05=0.3.
(2)由频率分布直方图可得平均分为:
0.1×45+0.15×55+0.15×65+0.3×75+0.25×85+0.05×95=71
第一、二、三组的频率之和为0.1+0.15+0.15=0.4
所以中位数= 70+≈73.33
(3)由频率分布直方图可得,成绩是40~50分的有40×0.1=4人,记为1,2,3,4,90~100分的学生有40×0.05=2人,记为a,b.
记“|x﹣y| ≤10”为事件A,
基本事件有(1,2) (1,3) (1,4) (1,a) (1,b) (2,3) (2,4) (2,a) (2,b) (3,4) (3,a) (3,b) (4,a) (4,b) (a,b) 共计15个, 事件A中包含的基本事件数为(1,2) (1,3) (1,4) (2,3) (2,4) (3,4) (a,b)共7个.
所以 P(A)=.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的图象是由函数g(x)=cosx的图象经过如下变换得到:先将g(x)的图象向右平移 个单位长度,再将其图象上所有点的横坐标变为原来的一半,纵坐标不变,则函数f(x)的图象的一条对称轴方程为( )
A.x=
B.x=
C.x=
D.x=
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列是递增的等比数列,a1+a4=9,a2a3=8,则数列的前n项和等于,解得a1=1,a4=8,或者a1=8,a4=1,但由于是递增数列,即a1=1,a4=8,即q3==8,所以q=2.因而数列的前n项和为 。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a,b,c是△ABC的三边,P: , Q:方程x2 +2ax+b2 = 0与方程x2 +2cx-b2 = 0有公共根. 则P是Q的_____.(填:充分不必要条件,必要而不充分条件,充要条件,既不充分也不必要条件)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知P是直线l:3x-4y+11=0上的动点,PA,PB是圆x2+y2-2x-2y+1=0的两条切线(A,B是切点),C是圆心,那么四边形PACB的面积的最小值是( )
A. B. 2 C. D. 2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的单调区间;
(2)已知f(x)在x=1处取得极大值,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体ABCD—A1B1C1D1,
则下列四个命题:
①P在直线BC1上运动时,三棱锥A—D1PC的体积不变;
②P在直线BC1上运动时,直线AP与平面ACD1所成角的大小不变;
③P在直线BC1上运动时,二面角P—AD1—C的大小不变;
④M是平面A1B1C1D1上到点D和C1距离相等的点,则M点的轨迹是过D1点的直线D1A1。
其中真命题的编号是 。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2﹣ax﹣1(a∈R).
(1)若对任意实数x,f(x)<0恒成立,求实数a的取值范围;
(2)当a>0时,解关于x的不等式f(x)<2x﹣3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,椭圆的左右顶点分别是,为直线上一点(点在轴的上方),直线与椭圆的另一个交点为,直线与椭圆的另一个交点为.
(1)若的面积是的面积的,求直线的方程;
(2)设直线与直线的斜率分别为,求证:为定值;
(3)若的延长线交直线于点,求线段长度的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com