精英家教网 > 高中数学 > 题目详情
在△ABC中,B=60°,最大边与最小边之比为2:1,则最大角为(  )
分析:根据角B=60°,可知边b既不是最大边,又不是最小边.因此设c为最大边,a为最小边,c=2a,用余弦定理计算出边b=
3
a,得到三条边的比为1:
3
:2,最后利用余弦定理计算出cosC=0,从而得到角C=90°,即得最大角的度数.
解答:解:∵△ABC中,B=60°,
∴边b既不是最大边,又不是最小边,
因为最大边与最小边之比为2:1,设c为最大边,a为最小边,c=2a,
根据余弦定理,得b2=a2+c2-2accos60°=a2+4a2-2a•2a•
1
2
=3a2
∴b=
3
a
因此可得:cosC=
a2+b2-c2
2ab
=
a2+(
3
a)2-(2a)2
2a•
3
a
=0
∵0°<C<180°
∴C=90°
∵边c为最大边⇒角C为最大角
∴最大角为90°
故选D
点评:本题以一个特殊三角形为例,在已知两边的比和夹角为60度的情况下,求三个角中最大角.着重考查了三角形中大角对大边和余弦定理等知识点,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠B=
π
6
,AC=1,AB=
3
,则BC的长度为
1或2
1或2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,b=6,c=5,   S△ABC=
15
2
,则a=
61±30
3
61±30
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)在△ABC中,∠B=
π
6
,|
AB
|=3
3
,|
BC
|=6,设D是AB的中点,O是△ABC所在平面内的一点,且3
OA
+2
OB
+
OC
=
0
,则|
DO
|的值是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在△ABC中,b=6,c=5,   S△ABC=
15
2
,则a=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在△ABC中,∠B=
π
6
,AC=1,AB=
3
,则BC的长度为______.

查看答案和解析>>

同步练习册答案