【题目】已知函数,则函数的零点个数为( )(是自然对数的底数)
A.6B.5C.4D.3
【答案】B
【解析】
利用导数研究函数的性质,如单调性,函数值的变化趋势和,函数的极值.再研究方程的解的个数,即直线与函数的公共点的的取值,从而利用函数的性质求得零点个数.
时,是增函数,,
时,,,显然,
由,
作出和的图象,如图,是增函数,在是减函数
它们有一个交点,设交点横坐标为,易得,,
在时,,,时,,,
所以在上递减,在上递增,是的极小值,也是在时的最小值.,,,即,,
时,,时,.作出的大致图象,作直线,如图,时与的图象有两个交点,即有两个解,.
时,,,由得,而时,,,所以直线与在处相切.即时方程有一个解.
,令,则,由上讨论知方程有三个解:()
而有一个解,和都有两个解,所以有5个解,
即函数有5个零点.
故选:B.
科目:高中数学 来源: 题型:
【题目】已知直线过点,倾斜角为,在以坐标原点为极点,轴的非负半轴为极轴的极坐标系中,曲线的方程为.
(1)写出直线的参数方程和曲线的直角坐标方程;
(2)若直线与曲线相交于两点,设点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《孙子算经》是中国古代重要的数学著作.其中的一道题“今有木,方三尺,高三尺,欲方五寸作枕一枚.问:得几何?”意思是:“有一块棱长为3尺的正方体方木,要把它作成边长为5寸的正方体枕头,可作多少个?”现有这样的一个正方体木料,其外周已涂上油漆,则从切割后的正方体枕头中任取一块,恰有一面涂上油漆的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左焦点为,是椭圆上关于原点对称的两个动点,当点的坐标为时,的周长恰为.
(1)求椭圆的方程;
(2)过点作直线交椭圆于两点,且 ,求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼.太极图展现了一种相互转化,相对统一的和谐美.定义:能够将圆的周长和面积同时等分成两个部分的函数称为圆的一个“太极函数”.现有下列说法:①对于圆:的所有非常数函数的太极函数中,一定不能为偶函数;②函数是圆:的一个太极函数;③存在圆,使得是圆的一个太极函数;④直线所对应的函数一定是圆:()的太极函数;⑤若函数()是圆:的太极函数,则.其中正确的是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“工资条里显红利,个税新政人民心”.随着2019年新年钟声的敲响,我国自1980年以来,力度最大的一次个人所得税(简称个税)改革迎来了全面实施的阶段.2019年1月1日实施的个税新政主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除;(3)专项附加扣除包括住房、子女教育和赡养老人等.
新旧个税政策下每月应纳税所得额(含税)计算方法及其对应的税率表如下:
旧个税税率表(个税起征点3500元) | 新个税税率表(个税起征点5000元) | |||
缴税级数 | 每月应纳税所得额(含税)=收入-个税起征点 | 税率(%) | 每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除 | 税率(%) |
1 | 不超过1500元部分 | 3 | 不超过3000元部分 | 3 |
2 | 超过1500元至4500元部分 | 10 | 超过3000元至12000元部分 | 10 |
3 | 超过4500元至9000元的部分 | 20 | 超过12000元至25000元的部分 | 20 |
4 | 超过9000元至35000元的部分 | 25 | 超过25000元至35000元的部分 | 25 |
5 | 超过35000元至55000元部分 | 30 | 超过35000元至55000元部分 | 30 |
··· | ··· | ··· | ··· | ··· |
随机抽取某市1000名同一收入层级的从业者的相关资料,经统计分析,预估他们2019年的人均月收入24000元.统计资料还表明,他们均符合住房专项扣除;同时,他们每人至多只有一个符合子女教育扣除的孩子,并且他们之中既不符合子女教育扣除又不符合赡养老人扣除、只符合子女教育扣除但不符合赡养老人扣除、只符合赡养老人扣除但不符合子女教育扣除、即符合子女教育扣除又符合赡养老人扣除的人数之比是2:1:1:1;此外,他们均不符合其他专项附加扣除.新个税政策下该市的专项附加扣除标准为:住房1000元/月,子女教育每孩1000元/月,赡养老人2000元/月等。
假设该市该收入层级的从业者都独自享受专项附加扣除,将预估的该市该收入层级的从业者的人均月收入视为其个人月收入.根据样本估计总体的思想,解决如下问题:
(1)设该市该收入层级的从业者2019年月缴个税为元,求的分布列和期望;
(2)根据新旧个税方案,估计从2019年1月开始,经过多少个月,该市该收入层级的从业者各月少缴交的个税之和就超过2019年的月收入?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于数列,定义“变换”:将数列变换成数列,其中,且,这种“变换”记作.继续对数列进行“变换”,得到数列,依此类推,当得到的数列各项均为时变换结束.
(1)试问和经过不断的“变换”能否结束?若能,请依次写出经过“变换”得到的各数列;若不能,说明理由;
(2)求经过有限次“变换”后能够结束的充要条件;
(3)证明:一定能经过有限次“变换”后结束.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com