精英家教网 > 高中数学 > 题目详情
9.已知a∈R,函数f(x)=x2-2ax+5.
(1)若a>1,且函数f(x)的定义域和值域均为[1,a],求实数a的值;
(2)若不等式x|f(x)-x2|≤1对x∈[$\frac{1}{3}$,$\frac{1}{2}$]恒成立,求实数a的取值范围.

分析 (1)判断出f(x)的单调性,利用单调性列方程解出;(2)问题转化为a≥$\frac{5x-1}{{2x}^{2}}$且a≤$\frac{5x+1}{{2x}^{2}}$在x∈[$\frac{1}{3}$,$\frac{1}{2}$]恒成立,根据函数的单调性求出a的范围即可.

解答 解:(1)∵f(x)的图象开口向上,对称轴为x=a>1,
∴f(x)在[1,a]上单调递减,
∴f(1)=a,即6-2a=a,解得a=2.
(2)不等式x|f(x)-x2|≤1对x∈[$\frac{1}{3}$,$\frac{1}{2}$]恒成立,
即x|2ax-5|≤1对x∈[$\frac{1}{3}$,$\frac{1}{2}$]恒成立,
故a≥$\frac{5x-1}{{2x}^{2}}$且a≤$\frac{5x+1}{{2x}^{2}}$在x∈[$\frac{1}{3}$,$\frac{1}{2}$]恒成立,
令g(x)=$\frac{5x-1}{{2x}^{2}}$,x∈[$\frac{1}{3}$,$\frac{1}{2}$],则g′(x)=-$\frac{2x(5x-2)}{{4x}^{4}}$,
令g′(x)>0,解得:$\frac{1}{3}$≤x<$\frac{2}{5}$,令g′(x)<0,解得:$\frac{2}{5}$<x≤$\frac{1}{2}$,
故g(x)在[$\frac{1}{3}$,$\frac{2}{5}$)递增,在($\frac{2}{5}$,$\frac{1}{2}$]递减,
故g(x)max=g($\frac{2}{5}$)=$\frac{25}{8}$,
令h(x)=$\frac{5x+1}{{2x}^{2}}$,x∈[$\frac{1}{3}$,$\frac{1}{2}$],h′(x)=$\frac{-2x(5x+2)}{{4x}^{4}}$<0,
故h(x)在x∈[$\frac{1}{3}$,$\frac{1}{2}$]递减,
h(x)min=h($\frac{1}{2}$)=7,
综上:$\frac{25}{8}$≤a≤7.

点评 本题考查了函数的单调性、最值问题,考查二次函数的性质以及函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知数列{an}的前n项和为Sn,若Sn=1+2an(n≥2),且a1=2,则S20(  )
A.219-1B.221-2C.219+1D.221+2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知tanα,tanβ是方程x2-bx+1-b=0的两根,且α,β∈(-$\frac{π}{2}$,$\frac{π}{2}$),求α+β.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知α∈(0,π),sinα+cosα=-$\frac{1}{5}$,则tanα=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若$\overrightarrow{a}$,$\overrightarrow{b}$是单位向量,且$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{3}$,若向量$\overrightarrow{c}$满足$\overrightarrow{c}$•$\overrightarrow{a}$=$\overrightarrow{c}$•$\overrightarrow{b}$=2,则|$\overrightarrow{c}$|=$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某企业在科研部门的支持下,启动减缓气候变化的技术攻关,将采用新工艺,把细颗粒物(PM2.5)转化为一种可利用的化工产品.已知该企业处理成本P(x)(亿元)与处理量x(万吨)之间的函数关系可近似地表示为P(x)=$\left\{\begin{array}{l}{\frac{{x}^{2}}{16}+\frac{x}{4},0≤x≤10}\\{x+\frac{4}{x}-\frac{33}{20},x>10}\end{array}\right.$另外技术人员培训费为2500万元,试验区基建费为1亿元.
(1)当0≤x≤10时,若计划在A国投入的总成本不超过5亿元,则该工艺处理量x的取值范围是多少?
(2)该企业处理量为多少万吨时,才能使每万吨的平均成本最低,最低是多少亿元?
附:投入总成本=处理成本+技术人员培训费+试验区基建费,平均成本=$\frac{投入总成本}{处理量}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在学习数学的过程中,我们通常运用类比猜想的方法研究问题.
(1)在圆x2+y2=r2(r>0)中,AB为圆的任意一条直径,C为圆上异于A、B的任意一点,当直线AC与BC的斜率kAC、kBC存在时,求kAC•kBC的值;
(2)在椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$中,AB为过椭圆中心的任意一条弦,C为椭圆上异于A、B的任意一点,当直线AC与BC的斜率kAC、kBC存在时,求kAC•kBC的值;
(3)直接写出椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$中类似的结论(不用证明).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义在R上的奇函数f(x)满足:当x>0时,f(x)=2017x+log2017x,则在R上,函数f(x)零点的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a∈R,函数f(x)=${log_2}(\frac{1}{x}+a)$.
(1)若f(2)=-3,求实数a的值;
(2)若关于x的方程f(x)-log2[(a-4)x+2a-5]=0的解集中恰好有一个元素,求a的取值范围.
(3)设a>0,若对任意t∈[$\frac{1}{2}$,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.

查看答案和解析>>

同步练习册答案