分析 (1)判断出f(x)的单调性,利用单调性列方程解出;(2)问题转化为a≥$\frac{5x-1}{{2x}^{2}}$且a≤$\frac{5x+1}{{2x}^{2}}$在x∈[$\frac{1}{3}$,$\frac{1}{2}$]恒成立,根据函数的单调性求出a的范围即可.
解答 解:(1)∵f(x)的图象开口向上,对称轴为x=a>1,
∴f(x)在[1,a]上单调递减,
∴f(1)=a,即6-2a=a,解得a=2.
(2)不等式x|f(x)-x2|≤1对x∈[$\frac{1}{3}$,$\frac{1}{2}$]恒成立,
即x|2ax-5|≤1对x∈[$\frac{1}{3}$,$\frac{1}{2}$]恒成立,
故a≥$\frac{5x-1}{{2x}^{2}}$且a≤$\frac{5x+1}{{2x}^{2}}$在x∈[$\frac{1}{3}$,$\frac{1}{2}$]恒成立,
令g(x)=$\frac{5x-1}{{2x}^{2}}$,x∈[$\frac{1}{3}$,$\frac{1}{2}$],则g′(x)=-$\frac{2x(5x-2)}{{4x}^{4}}$,
令g′(x)>0,解得:$\frac{1}{3}$≤x<$\frac{2}{5}$,令g′(x)<0,解得:$\frac{2}{5}$<x≤$\frac{1}{2}$,
故g(x)在[$\frac{1}{3}$,$\frac{2}{5}$)递增,在($\frac{2}{5}$,$\frac{1}{2}$]递减,
故g(x)max=g($\frac{2}{5}$)=$\frac{25}{8}$,
令h(x)=$\frac{5x+1}{{2x}^{2}}$,x∈[$\frac{1}{3}$,$\frac{1}{2}$],h′(x)=$\frac{-2x(5x+2)}{{4x}^{4}}$<0,
故h(x)在x∈[$\frac{1}{3}$,$\frac{1}{2}$]递减,
h(x)min=h($\frac{1}{2}$)=7,
综上:$\frac{25}{8}$≤a≤7.
点评 本题考查了函数的单调性、最值问题,考查二次函数的性质以及函数恒成立问题,是一道中档题.
科目:高中数学 来源: 题型:选择题
A. | 219-1 | B. | 221-2 | C. | 219+1 | D. | 221+2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com