【题目】已知向量,记.
(1)求的单调递减区间及最小正周期;
(2)将函数的图象向右平移个单位得到的图象,若函数在上有零点,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】如果函数在其定义域内存在实数,使得成立,则称函数为“可拆分函数”.
(1)试判断函数是否为“可拆分函数”?并说明你的理由;
(2)证明:函数为“可拆分函数”;
(3)设函数为“可拆分函数”,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知学生的总成绩与数学成绩之间有线性相关关系,下表给出了5名同学在一次考试中的总成绩和数学成绩(单位:分).
学生编号 成绩 | 1 | 2 | 3 | 4 | 5 |
总成绩/x | 482 | 383 | 421 | 364 | 362 |
数学成绩/y | 78 | 65 | 71 | 64 | 61 |
(1)求数学成绩与总成绩的回归直线方程.
(2)根据以上信息,如果一个学生的总成绩为450分,试估计这个学生的数学成绩;
(3)如果另一位学生的数学成绩为92分,试估计其总成绩是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若存在两个正实数m、n,使得等式a(lnn﹣lnm)(4em﹣2n)=3m成立(其中e为自然对数的底数),则实数a的取值范围是( )
A.(﹣∞,0)
B.(0, ]
C.[ ,+∞)
D.(﹣∞,0)∪[ ,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC﹣A1B1C1中,AC⊥AB,AB=2AA1 , M是AB的中点,△A1MC1是等腰三角形,D为CC1的中点,E为BC上一点.
(1)若DE∥平面A1MC1 , 求 ;
(2)求直线BC和平面A1MC1所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系内,已知点A(1,0,B(-1,0),圆的方程为,点为圆上的动点.
(1)求过点的圆的切线方程.
(2)求的最大值及此时对应的点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,若1+ = .
(1)求角A的大小;
(2)若函数f(x)=2sin2(x+ )﹣ cos2x,x∈[ , ],在x=B处取到最大值a,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=8,AD=4,AB=2DC=4 .
(1)设M是PC上的一点,求证:平面MBD⊥平面PAD;
(2)求四棱锥P﹣ABCD的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com