精英家教网 > 高中数学 > 题目详情

已知函数a为常数)在x=1处的切线的斜率为1

(1)求实数a的值,并求函数的单调区间,

(2)若不等式k在区间上恒成立,其中e为自然对数的底数,求实数k的取值范围.

 

【答案】

(1)的单调递增区间是的单调递减区间是;(2).

【解析】

试题分析:(1)先求,利用在处的导数就是此点处切线斜率,即,算出a,然后确定函数的定义域,利用的区间为函数的增区间,的区间为函数的减区间;(2)将不等式恒成立转化成,利用(1)的单调性,判断出上的最小值为,所以分别求出,然后比较得出最小值.,此题考察利用导数研究函数性质,逻辑推理要严谨,此题属于中档题.

试题解析:(1)

由题知:,解得,.

,定义域

,由,得

时,,此时,上单调递减.

时,,此时,上单调递增.

综上:的单调递增区间是的单调递减区间是.

(2)(1)在上单调递增,在上单调递减.

上的最小值为

上的最小值为

上恒成立,则

考点:1.求函数的导数;2.利用导数求函数的单调区间和最值.

 

练习册系列答案
相关习题

科目:高中数学 来源:2012年宁夏高考数学仿真模拟试卷3(文科)(解析版) 题型:解答题

已知函数( a为常数、a∈R),
(1)讨论函数f(x)的单调性;
(2)当a=1时,判断函数g(x)的零点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年上海市普陀区曹杨二中高考数学模拟试卷(文科)(解析版) 题型:解答题

已知函数(a为常数)的图象经过点(1,3).
(1)求实数a的值;
(2)写出函数f(x)在[a,a+1]上的单调区间,并求函数f(x)在[a,a+1]上的值域.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年安徽省皖中地区示范高中高三联考数学试卷(文科)(解析版) 题型:解答题

已知函数( a为常数、a∈R),
(1)讨论函数f(x)的单调性;
(2)当a=1时,判断函数g(x)的零点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年青海省高一上学期期中考试数学试卷 题型:解答题

已知函数(a为常数)是R上的奇函数,函数

是区间[-1,1]上的减函数.

(1)求a的值;

(2)若上恒成立,求t的取值范围

 

查看答案和解析>>

科目:高中数学 来源:2010年贵州省遵义市高三考前最后一次模拟测试数学(理)试题 题型:解答题

(本小题满分12分)

已知函数其中a为常数,且

(Ⅰ)当时,求(e=2.718 28…)上的值域;

(Ⅱ)若对任意恒成立,求实数a的取值范围.

 

查看答案和解析>>

同步练习册答案