【题目】以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C的参数方程为: (φ为参数),直线l的极坐标方程为ρ(cosθ+sinθ)=4.
(1)求曲线C的普通方程和直线l的直角坐标方程;
(2)若点P在曲线C上,点Q在直线l上,求线段PQ的最小值.
【答案】
(1)解:曲线C的参数方程为: (φ为参数),可得普通方程: +y2=1.
直线l的极坐标方程为ρ(cosθ+sinθ)=4,可得直角坐标方程:x+y﹣4=0
(2)解:令P ,(α∈[0,2π)).则点P到直线l的距离d= = ≥ ,当且仅当 =1时取等号.
∴线段PQ的最小值为
【解析】(1)曲线C的参数方程为: (φ为参数),利用cos2φ+sin2φ=1可得普通方程.把x=ρcosθ,y=ρsinθ代入直线l的极坐标方程ρ(cosθ+sinθ)=4,可得直角坐标方程.(2)令P ,(α∈[0,2π)).则点P到直线l的距离d= = ,利用三角函数的单调性与值域即可得出.
科目:高中数学 来源: 题型:
【题目】在△ABC中,AB=5,AC=12,BC=13,一只小蚂蚁从△ABC的内切圆的圆心处开始随机爬行,当蚂蚁(在三角形内部)与△ABC各边距离不低于1个单位时其行动是安全的,则这只小蚂蚁在△ABC内任意行动时安全的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】判断下列各题中p是q的什么条件.
(1)p:|x|=|y|,q:x=y;
(2)p:△ABC是直角三角形,q:△ABC是等腰三角形;
(3)p:四边形的对角线互相平分,q:四边形是矩形;
(4)p:圆x2+y2=r2(r>0)与直线ax+by+c=0相切,q:c2=(a2+b2)r2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,已知 平面,且四边形为直角梯形, , , ,点, 分别是, 的中点.
(I)求证: 平面;
(Ⅱ)点是线段上的动点,当直线与所成角最小时,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】双曲线 ﹣ =1(a>0,b>0)的左、右焦点分别为F1 , F2 , P为双曲线上一点,且 =0,△F1PF2的内切圆半径r=2a,则双曲线的离心率e= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a是从集合{1,2,3,4}中随机取出的一个数,b是从集合{1,2,3}中随机取出的一个数,构成一个基本事件(a,b)。记“在这些基本事件中,满足logba≥1为事件A,则A发生的概率是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱椎P﹣ABC中,PA=PB=PC=AC=4,AB=BC=2 .
(1)求证:平面ABC⊥平面APC.
(2)若动点M在底面三角形ABC内(包括边界)运动,使二面角M﹣PA﹣C的余弦值为 ,求此时∠MAB的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com