精英家教网 > 高中数学 > 题目详情

(12分) 若二次函数f(x)=ax2+bx+c(a≠0)的图象关于y轴对称,
且f(-2)>f(3),设m>-n>0.
(1) 试证明函数f(x)在(0,+∞)上是减函数;
(2) 试比较f(m)和f(n)的大小,并说明理由.

(1)见解析;(2)f(m)<f(n).

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分13分)已知函数是偶函数
(1)求k的值;
(2)设,若函数f(x)与g(x)的图像有且只有一个公共点,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数在的单调递减区间(—∞,2],求函数在区间[3,5]上的最大值.
(2)若函数在在单区间(—∞,2]上是单调递减,求函数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

本小题满分10分
解关于的不等式,且).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,,其中是自然常数).
(Ⅰ)求的单调性和极小值;
(Ⅱ)求证:上单调递增;
(Ⅲ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数
(1) 画出函数图像
(2)指出图像的开口方向、对称轴方程、顶点坐标;
(3)求函数的最大值或最小值;
(4)写出函数的单调区间

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某同学利用暑假时间到一家商场勤工俭学,该商场向他提供了三种付款方式:第一种,每天支付38圆;第二种,第一天付4元,第二天付8元,第三天付12元,以此类推:第三种,第一天付0.4元,以后每天比前一天翻一番(即增加一倍),
你会选择哪种方式领取报酬呢?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数处取得极值,且在点处的切线与直线平行. 
(1)求的解析式;      (2)求函数的单调递增区间及极值;
(3)求函数的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数定义域为,若对于任意的,都有,且>0时,有>0.
⑴证明: 为奇函数;
⑵证明: 上为单调递增函数;
⑶设=1,若<,对所有恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案