精英家教网 > 高中数学 > 题目详情

【题目】已知函数,函数,若,使得不等式成立,则实数的取值范围为( )

A. B.

C. D.

【答案】D

【解析】

t=,利用二次函数图像的性质求函数fx)的最大值,令u=sinx[0,]对函数gx)按a=0,a>0,a<0进行讨论求出函数最大值,由题可得fxmax<gxmax解不等式即可得到所求范围.

,当时,令t=

可得,对称轴为,故最大值为

f(x)得最大值为

时,令u=sinx[0,],,

a=0时,y=2,

a<0时,二次函数对称轴为,故函数在对称轴处取到最大值为2-,

a>0时,开口向上,0距对称轴远,故当u=0时取到最大值为2-a,

所以

由题意可得fxmax<gxmax

即当a<0时,,解得,故a<0,

a=0时,,满足题意,

a>0时,,解得

综上可得

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列四个说法,其中正确的是( )

A.命题“若,则”的否命题是“若,则

B.”是“双曲线的离心率大于”的充要条件

C.命题“”的否定是“

D.命题“在中,若,则是锐角三角形”的逆否命题是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的离心率为,长轴的左、右端点分别为.

1)求椭圆C的方程;

2)设直线与椭圆C交于PQ两点,直线交于S,试问:当m变化时,点S是否恒在一条定直线上?若是,请写出这条直线的方程,并证明你的结论;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

(Ⅰ)当曲线在点处的切线与直线垂直时,判断函数在区间上的单调性;

(Ⅱ)若函数在定义域内有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,函数

1)求函数的单调递减区间;

2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,点中点,底面为梯形,.

(1)证明:平面

(2)若四棱锥的体积为4,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点为,点上.

(1)求椭圆的方程;

(2)若直线与椭圆相交于两点,问轴上是否存在点,使得是以为直角顶点的等腰直角三角形?若存在,求点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为,且椭圆的一个焦点在圆上.

(1)求椭圆的方程;

(2)已知椭圆的焦距小于,过椭圆的左焦点的直线与椭圆相交于两点,若,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,PD⊥平面ABCD,PD=AD=3,PM=2MD,AN=2NB,DAB=60°.

(1)求证:直线AM∥平面PNC;

(2)求二面角D﹣PC﹣N的余弦值.

查看答案和解析>>

同步练习册答案