精英家教网 > 高中数学 > 题目详情
椭圆与双曲线有相同的焦点,则的值是
A.B.1或-2 C.1或D.1
D
椭圆与双曲线都是标准方程。有相同焦点,则
焦点在x轴上,且 故选D
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
在综合实践活动中,因制作一个工艺品的需要,某小组设计了如图所示的一个门(该图为轴对
称图形),其中矩形的三边由长6分米的材料弯折而成,边的长
分米();曲线拟从以下两种曲线中选择一种:曲线一段余弦曲线
(在如图所示的平面直角坐标系中,其解析式为),此时记门的最高点
边的距离为;曲线是一段抛物线,其焦点到准线的距离为,此时记门的最高点
边的距离为.
(1)试分别求出函数的表达式;
(2)要使得点边的距离最大,应选用哪一种曲线?此时,最大值是多少?
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆(常数)的左右焦点分别为是直线上的两个动点,
(1)若,求的值;
(2)求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆的右焦点引直线,与的右准线交于点,与交于两点,与轴交于点,若,则的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设双曲线的离心率,右焦点,方程的两个根分别为,则点
A.圆B.圆
C.圆D.以上三种情况都有可能

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,过坐标原点且斜率为的直线
椭圆相交于
(Ⅰ)求椭圆的方程;
(Ⅱ)若动圆与椭圆和直线都没有公共点,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆经过点(0,),离心率为,直线l经过椭圆C的右焦点F椭圆于AB两点,点AFB在直线x=4上的射影依次为点DKE.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线ly轴于点M,且,当直线l的倾斜角变化时,探求 的值是否为定值?若是,求出的值,否则,说明理由;
(Ⅲ)连接AEBD,试探索当直线l的倾斜角变化时,直线AEBD是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)设是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,证明直线轴相交于定点
(Ⅲ)在(Ⅱ)的条件下,过点的直线与椭圆交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆或双曲线上存在点,使得点到两个焦点的距离之比为2:1,则称此椭圆或双曲线为“倍分曲线”,则下列曲线中是“倍分曲线”的是(      )
A.B.
C.D.

查看答案和解析>>

同步练习册答案