精英家教网 > 高中数学 > 题目详情

【题目】如图,在中, 中点, (不同于点),延长,将沿折起,得到三棱锥,如图所示.

Ⅰ)若的中点,求证:直线平面

Ⅱ)求证:

Ⅲ)若平面平面,试判断直线与直线能否垂直?请说明理由.

【答案】1)见解析(2)见解析(3)不能垂直

【解析】试题分析:(1由三角形中位线性质得再根据线面平行判定定理得结论2由折叠知 由线面垂直判定定理得平面即得结论3假设直线与直线垂直,则可得直线与直线垂直,与题设E与D不同矛盾,假设不成立.

试题解析:证明:∵分别为中点,

又∵平面

平面

平面

点,

平面

平面

直线与直线不能垂直,

平面平面

平面平面

平面

平面

平面

又∵

假设

点,

平面

为锐角矛盾,

∴直线与直线不能垂直.

点睛:立体几何中折叠问题,要注重折叠前后垂直关系的变化,不变的垂直关系是解决问题的关键条件. 探索性问题通常用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的位置关系存在,运用分析法思想进行推理,直至已知或矛盾.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣x3+ax2+bx+c图象上的点P(1,m)处的切线方程为y=﹣3x+1
(1)若函数f(x)在x=﹣2时有极值,求f(x)的表达式.
(2)若函数f(x)在区间[﹣2,0]上单调递增,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知椭圆的半焦距为c,且过点,原点O到经过两点(c,0),(0,b)的直线的距离为.

(1)求椭圆E的方程;

(2)A为椭圆E上异于顶点的一点,点P满足,过点P的直线交椭圆EB,C两点,且,若直线OA,OB的斜率之积为,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去个三棱锥后,剩下的几何体的体积是( ).

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,

(1)求函数的单调区间;

(2)若不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).

(1)求抛物线的解析式;
(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值;
(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为(  )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列是递增数列,其前项和为,且

I)求数列的通项公式;

II,求数列的前 项和.

查看答案和解析>>

同步练习册答案