精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ex+bex , (b∈R),函数g(x)=2asinx,(a∈R).
(1)求函数f(x)的单调区间;
(2)若b=﹣1,f(x)>g(x),x∈(0,π),求a取值范围.

【答案】
(1)

解:

①当b≤0时,f'(x)≥0,所以f(x)的增区间为(﹣∞,+∞);

②当b>0时,减区间为 ,增区间为


(2)

解:由题意得ex﹣ex﹣2asinx>0,x∈(0,π)恒成立,

构造函数h(x)=ex﹣ex﹣2asinx,x∈(0,π)

显然a≤0时,ex﹣ex﹣2asinx>0,x∈(0,π)恒成立,

下面考虑a>0时的情况:h(0)=0,h′(x)=ex+ex﹣2acosx,h′(0)=2﹣2a,

当0<a≤1时,h′(x)≥0,所以h(x)=ex﹣ex﹣2asinx在(0,π)为增函数,

所以h(x)>h(0)=0,即0<a≤1满足题意;

当a>1时,h′(0)=2﹣2a<0,又

所以一定存在 ,h′(x0)=0,且h′(x)<0,x∈(0,x0),

所以h(x)在(0,x0)单调递减,所以h(x)<h(0)=0,

x∈(0,x0),不满足题意.

综上,a取值范围为(﹣∞,1]


【解析】(1)求出函数的导数,通过讨论b的范围,求出函数的单调区间即可;(2)构造函数h(x)=ex﹣ex﹣2asinx,x∈(0,π),通过讨论a的范围确定函数的单调性,从而求出a的范围.
【考点精析】关于本题考查的利用导数研究函数的单调性和函数的最大(小)值与导数,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知动点M(x,y)到直线ι:x=4的距离是它到点N(1,0)的距离的2倍.
(1)求动点M的轨迹C的方程;
(2)过点P(0,3)的直线m与轨迹C交于A,B两点,若A是PB的中点,求点A的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°,相距20海里的C处的乙船,现乙船朝北偏东的方向即沿直线CB前往B处救援,则等于 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在x轴上的椭圆C的离心率为,(0,)是椭圆与y轴的一个交点.

(1)求椭圆C的方程;

(2)直线x=2与椭圆交于P,Q两点,P位于第一象限,A,B是椭圆上位于直线x=2两侧的动点;

若直线AB的斜率为,求四边形APBQ面积的取值范围;

当点A,B在椭圆上运动,且满足∠APQ=∠BPQ,直线AB的斜率是否为定值?若是,求出此定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区2008年至2014年农村居民家庭纯收入y单位:千元的数据如下表:

年份

2008

2009

2010

2011

2012

2013

2014

年份代号

1

2

3

4

5

6

7

人均纯收入y

29

33

36

44

48

52

59

求y关于的线性回归方程

利用中的回归方程,分析2008年至2014年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2016年农村居民家庭人均纯收入

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的通项an=n2(cos2 ﹣sin2 ),其前n项和为Sn , 则S30

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD为梯形,AD∥BC,且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.

(1)证明:Q为BB1的中点;
(2)若AA1=4,CD=2,梯形ABCD的面积为6,∠ADC=60°,求平面α与底面ABCD所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,A,B分别是椭圆C:=1(a>b>0)的左右顶点,F为其右焦点,2|AF||FB|的等差中项,|AF||FB|的等比中项.P是椭圆C上异于A,B的任一动点,过点A作直线l⊥x.以线段AF为直径的圆交直线AP于点A,M,连接FM交直线l于点Q.

(1)求椭圆C的方程;

(2)试问在x轴上是否存在一个定点N,使得直线PQ必过该定点N?若存在,求出点N的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sinB=
(Ⅰ)求b和sinA的值;
(Ⅱ)求sin(2A+ )的值.

查看答案和解析>>

同步练习册答案