【题目】如图,正三棱柱所有棱长都是2,D棱AC的中点,E是棱的中点,AE交于点H.
(1)求证:平面;
(2)求二面角的余弦值;
(3)求点到平面的距离.
【答案】(1)参考解析;(2) ;(3)
【解析】
试题分析:(1)由正三棱柱,可得平面ACB⊥平面.又DB⊥AC.所以如图建立空间直角坐标系.分别点A,E,B,D, 的坐标,得出相应的向量.即可得到向量AE与向量BD,向量的数量积为零.即可得直线平面.
(2)由平面,平面分别求出这两个平面的法向量,根据法向量的夹角得到二面角的余弦值(根据图形取锐角).
(3)点到平面的距离,转化为直线与法向量的关系,再通过解三角形的知识即可得点到平面的距离.本小题关键是应用解三角形的知识.
试题解析:(1)证明:建立如图所示,
∵
∴ 即AE⊥A1D, AE⊥BD
∴AE⊥面A1BD
(2)由 ∴取
设面AA1B的法向量为 ,
由图可知二面角D—BA1—A的余弦值为
(3),平面A1BD的法向量取
则B1到平面A1BD的距离d=
科目:高中数学 来源: 题型:
【题目】写出由下列各组命题构成的“p或q”“p且q”以及“非p”形式的命题,并判断它们的真假:
(1)p:3是素数,q:3是偶数;
(2)p:x=-2是方程x2+x-2=0的解,q:x=1是方程x2+x-2=0的解.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】解答
(1)已知全集U={x|﹣5≤x≤10,x∈Z},集合M={x|0≤x≤7,x∈Z},N={x|﹣2≤x<4,x∈Z},求(UN)∩M(分别用描述法和列举法表示结果)
(2)已知全集U=A∪B={0,1,2,3,4,5,6,7,8,9,10},若集合A∩UB={2,4,6,8},求集合B;
(3)已知集合P={x|ax2+2ax+1=0,a∈R,x∈R},当集合P只有一个元素时,求实数a的值,并求出这个元素.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,命题椭圆C1: 表示的是焦点在轴上的椭圆,命题对,直线与椭圆C2: 恒有公共点.
(1)若命题“”是假命题,命题“”是真命题,求实数的取值范围.
(2)若真假时,求椭圆C1、椭圆C2的上焦点之间的距离d的范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等腰直角三角形ABC的直角顶点A在x轴的正半轴上,B在y轴的正半轴上,C在第一象限,设∠BAO=θ(O为坐标原点),AB=AC=2,当OC的长取得最大值时,tanθ的值为( )
A.
B.﹣1+
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组,第二组,…,第五组,如图是按上述分组方法得到的频率分布直方图.
(Ⅰ)根据频率分布直方图,估计这50名学生百米测试成绩的中位数和平均数(精确到0.1).
(Ⅱ)若从第一、五组中随机取出三名学生成绩,设取自第一组的个数为,求的分布列,期望及方差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的角A、B、C所对的边分别是a、b、c,设向量 , , .
(1)若 ∥ ,求证:△ABC为等腰三角形;
(2)若 ⊥ ,边长c=2,角C= ,求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com