精英家教网 > 高中数学 > 题目详情
设数列{an}的各项均为正数,它的前n项和为Sn(n∈N*),已知点(an,4Sn)在函数f (x)=x2+2x+1的图象上.
(1)证明{an}是等差数列,并求an
(2)设m、k、p∈N*,m+p=2k,求证:
1
Sm
+
1
Sp
2
Sk

(3)对于(2)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,请证明你的结论,如果不成立,请说明理由.
分析:(1)由4Sn=an2+2an+1,递推得4Sn-1=an-12+2an-1+1(n≥2),两式相减整理可得(an+an-1)(an-an-1-2)=0,由an+an-1≠0,可知an-an-1=2,符合等差数列的定义.
(2)由(1)可求得Sn=
n(1+2n-1)
2
=n2
,从而有Sm=m2,Sp=p2,Sk=k2.再作差比较.
(3)由特殊到一般可猜想结论成立,设等差数列{an}的首项为a1,公差为d,则Sn=na1+
n(n-1)
2
d=
n(a1+an)
2
,可证明Sm+Sp-2Sk=ma1+
m(m+1)
2
d+pa1+
p(p-1)
2
d-[2ka1+k(k-1)d]=(m+p)a1+
m2+p2-(m+p)
2
d-[2ka1+(k2-k)d]=
m2+p2-2× (
m+p
2
)
2
2
•d=
(m-p)2
4
≥0,SmSp=
mp(a1+am)(a1+ap)  
4
=
mp[a12+a1(am+ap)+amap]    
4
k2(a1+ak2
4
=(
Sk
2
)
2
,从而得证.
解答:证明:(1)∵4Sn=an2+2an+1,
∴4Sn-1=an-12+2an-1+1(n≥2).
两式相减得4an=an2-an-12+2an-2an-1
整理得(an+an-1)(an-an-1-2)=0,
∵an+an-1≠0,
∴an-an-1=2(常数).
∴{an}是以2为公差的等差数列.又4S1=a12+2a1+1,即a12-2a1+1=0,解得a1=1,
∴an=1+(n-1)×2=2n-1.(4分)
(2)由(1)知Sn=
n(1+2n-1)
2
=n2
,∴Sm=m2,Sp=p2,Sk=k2
1
Sm
+
1
Sp
-
2
Sk
=
1
m2
+
1
p2
-
2
k2
=
k2(m2+p2)-2m2p2
m2p2k2

(
m+p
2
)
2
•2mp-2m2p2
m2p2k2
2mp•mp-2m2p2
m2p2k2
=0,
1
Sm
+
1
Sp
2
Sk
.(7分)
(3)结论成立,证明如下:
设等差数列{an}的首项为a1,公差为d,则Sn=na1+
n(n-1)
2
d=
n(a1+an)
2

∵Sm+Sp-2Sk=ma1+
m(m+1)
2
d+pa1+
p(p-1)
2
d-[2ka1+k(k-1)d]=(m+p)a1+
m2+p2-(m+p)
2
d-[2ka1+(k2-k)d],
把m+p=2k代入上式化简得
Sm+SP-2Sk=
m2+p2-2× (
m+p
2
)
2
2
•d=
(m-p)2
4
≥0,
∴Sm+Sp≥2Sk.
又SmSp=
mp(a1+am)(a1+ap)  
4
=
mp[a12+a1(am+ap)+amap]    
4

(
m+p
2
)
2
[a12+2a1ak+(
am+ap
2
)
2
]   

=
k2(a12+ak2+2a1ak)   
4

=
k2(a1+ak2
4
=(
Sk
2
)
2

Sm
+
1
Sp
=
Sm+Sp
SmSp
2Sk
(
Sk
2
)
2
=
2
Sk

故原不等式得证.(14分)
点评:本题主要考查数列与函数,不等式的综合运用,主要涉及了等差数列通项及前n项和,不等式证明,还考查了放缩法,转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的各项都是正数,且对任意n∈N+,都有a13+a23+a33+…+an3=Sn2,其中Sn为数列{an}的前n项和.
(Ⅰ)求证:an2=2Sn-an
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设bn=3n+(-1)n-1λ•2an(λ为非零整数,n∈N*)试确定λ的值,使得对任意n∈N*,都有bn+1>bn成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的各项都是正数,Sn是其前n项和,且对任意n∈N*都有an2=2Sn-an
(1)求数列{an}的通项公式;
(2)若bn=(2n+1)2an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的各项均为正实数,bn=log2an,若数列{bn}满足b2=0,bn+1=bn+log2p,其中p为正常数,且p≠1.
(1)求数列{an}的通项公式;
(2)是否存在正整数M,使得当n>M时,a1•a4•a7•…•a3n-2>a16恒成立?若存在,求出使结论成立的p的取值范围和相应的M的最小值;若不存在,请说明理由;
(3)若p=2,设数列{cn}对任意的n∈N*,都有c1bn+c2bn-1+c3bn-2+…+cnb1=-2n成立,问数列{cn}是不是等比数列?若是,请求出其通项公式;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的各项均为正数,它的前n项和为Sn,点(an,Sn)在函数y=
1
8
x2+
1
2
x+
1
2
的图象上,数列{bn}的通项公式为bn=
an+1
an
+
an
an+1
,其前n项和为Tn
(1)求an;   
(2)求证:Tn-2n<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江苏一模)设数列{an}的各项均为正数,其前n项的和为Sn,对于任意正整数m,n,Sm+n=
2a2m(1+S2n)
-1
恒成立.
(1)若a1=1,求a2,a3,a4及数列{an}的通项公式;
(2)若a4=a2(a1+a2+1),求证:数列{an}成等比数列.

查看答案和解析>>

同步练习册答案