如图,正三棱柱的底面边长是,侧棱长是,是的中点.
(1)求证:∥平面;
(2)求二面角的大小;
(3)在线段上是否存在一点,使得平面平面,若存在,求出的长;若不存在,说明理由.
(1)详见解析,(2),(3).
解析试题分析:(1)线面平行判定定理,关键找线线平行.利用三角形中位线性质找平行,取的中点,则是三角形的中位线,即∥.应用定理证明时,需写出定理所需条件.(2)利用空间向量求二面角的大小,关键求出平面的法向量.平面的一个法向量为,而平面的法向量则需列方程组解出.根据向量的数量积求出两向量夹角,再根据向量夹角与二面角的大小关系,求出结果.一般根据图像判定所求二面角是锐角还是钝角.(3)存在性问题,从假定存在出发,利用面面垂直列等量关系.在(2)中已求出平面的法向量,因此只需用点坐标表示平面的法向量即可.解题结果需注意点在线段上这一限制条件.
试题解析:
(1)证明:连结交于,连结,
因为三棱柱是正三棱柱,
所以四边形是矩形,
所以为的中点.
因为是的中点,
所以是三角形的中位线, 2分
所以∥. 3分
因为平面,平面,
所以∥平面. 4分
(2)解:作于,所以平面,
所以在正三棱柱中如图建立空间直角坐标系.
因为,,是的中点.
所以,,,, 5分
所以,,
.
设是平面的法向量,
所以即
令,则,,
所以是平面的一个法向量. 6分
由题意可知是平面
科目:高中数学 来源: 题型:解答题
如图所示,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2,点E为AB的中点,
(1).求证:D1E⊥A1D;
(2).在线段AB上是否存在点M,使二面角D1-MC-D的大小为?,若存在,求出AM的长,若不存在,说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图一,平面四边形关于直线对称,.把沿折起(如图二),使二面角的余弦值等于.对于图二,完成以下各小题:
(1)求两点间的距离;
(2)证明:平面;
(3)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥中,底面是矩形,,,,是棱的中点.
(1)求证:平面;
(2)求证:平面;
(3)在棱上是否存在一点,使得平面平面?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在三棱柱ABC—A1B1C1中,AA1⊥面ABC,AC⊥BC,E、F分别在线段上,B1E=3EC1,AC=BC=CC1=4.
(1)求证:BC⊥AC1;
(2)试探究:在AC上是否存在点F,满足EF//平面A1ABB1,若存在,请指出点F的位置,并给出证明;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,点C是以AB为直径的圆上的一点,直角梯形BCDE所在平面与圆O所在平面垂直,且DE∥BC,DC⊥BC,DE=BC.
(1)证明:EO∥平面ACD;
(2)证明:平面ACD⊥平面BCDE.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com