精英家教网 > 高中数学 > 题目详情

【题目】已知函数为实数,

(1)若函数的图象过点,且方程有且只有一个实根,求的表达式;

(2)在(1)的条件下,当时,是单调函数,求实数的取值范围.

【答案】(1)f(x)= x2+2x+1(2)(-∞,0∪ [6,+∞)

【解析】试题分析:

(1)由题意得到 关于a,b的方程组,求解方程组,待定系数法可得的表达式是f(x)=x2+2x+1

(2)利用二次函数的性质 结合函数的对称轴求解不等式 可得实数的取值范围是(-∞,0 [6,+∞).

试题解析:

(1)f(-2)=1b=2a =b2-4a=0 所以a=1,b=2 所以f(x)= x2+2x+1

(2) 因为g(x)= x2+(2-k)x+1 所以 2 -1 k6k0

所以k的取值范围 (-∞,0[6,+∞)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义在R上的偶函数f(x),当x≥0时,f(x)=x2﹣4x
(1)求f(﹣2)的值;
(2)当x<0时,求f(x)的解析式;
(3)设函数f(x)在[t﹣1,t+1](t>1)上的最大值为g(t),求g(t)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017开封高三模拟理】如图,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点.将△ADE与△BEC分别沿ED、EC向上折起,使A、B重合于点P,则三棱锥P-DCE的外接球的体积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率,过椭圆的左焦点且倾斜角为的直线与圆相交所得弦的长度为1.

(1)求椭圆的方程;

(2)若直线交椭圆于不同的两点,设 ,其中为坐标原点.当以线段为直径的圆恰好过点时,求证: 的面积为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按元/度收费,超过200度但不超过400度的部分按元/度收费,超过400度的部分按1.0元/度收费.

(Ⅰ)求某户居民用电费用(单位:元)关于月用电量(单位:度)的函数解析式;

(Ⅱ)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的占,求 的值;

(Ⅲ)在满足(Ⅱ)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点代替,记为该居民用户1月份的用电费用,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解学生的身体素质情况,现从我校学生中随机抽取10人进行体能测试,测试的分数(百分制)如茎叶图所示.根据有关国家标准,成绩不低于79分的为优秀,将频率视为概率.

(1)另从我校学生中任取3人进行测试,求至少有1人成绩是“优秀”的概率;

(2)从前文所指的这10人(成绩见茎叶图)中随机选取3人,记 表示测试成绩为“优秀”的学生人数,求的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为了了解全校学生的阅读情况,在全校采用随机抽样的方法抽取了60名学生(其中初中组和高中组各30名)进行问卷调查,并将他们在一个月内去图书馆的次数进行了统计,将每组学生去图书馆的次数分为5组: ,分别制作了如图所示的频率分布表和频率分布直方图.

分组

人数

频率

3

9

9

0.2

0.1

(1)完成频率分布表,并求出频率分布直方图中的值;

(2)在抽取的60名学生中,从在一个月内去图书馆的次数不少于16次的学生中随机抽取3人,并用 表示抽得的高中组的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】宋元时期杰出的数学家朱世杰在其数学巨著《四元玉鉴》卷中茭草形段第一个问题今有茭草六百八十束,欲令落一形埵(同垛)之.问底子(每层三角形边茭草束数,等价于层数)几何?中探讨了垛枳术中的落一形垛(落一形即是指顶上1束,下一层3束,再下一层6束,,成三角锥的堆垛,故也称三角垛,如图,表示第二层开始的每层茭草束数),则本问题中三角垛底层茭草总束数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若{1,a, }={0,a2 , a+b},则a2005+b2005的值为(
A.0
B.﹣1
C.1
D.1或﹣1

查看答案和解析>>

同步练习册答案