【题目】某工厂有两个车间生产同一种产品,第一车间有工人200人,第二车间有工人400人,为比较两个车间工人的生产效率,采用分层抽样的方法抽取工人,并对他们中每位工人生产完成一件产品的时间(单位:min)分别进行统计,得到下列统计图表(按照[55,65),[65,75),[75,85),[85,95]分组).
分组 | 频数 |
[55,65) | 2 |
[65,75) | 4 |
[75,85) | 10 |
[85,95] | 4 |
合计 | 20 |
第一车间样本频数分布表
(Ⅰ)分别估计两个车间工人中,生产一件产品时间小于75min的人数;
(Ⅱ)分别估计两车间工人生产时间的平均值,并推测哪个车间工人的生产效率更高?(同一组中的数据以这组数据所在区间中点的值作代表)
(Ⅲ)从第一车间被统计的生产时间小于75min的工人中,随机抽取3人,记抽取的生产时间小于65min的工人人数为随机变量X,求X的分布列及数学期望.
【答案】(I)60,300;(II)第二车间工人生产效率更高.(III)见解析.
【解析】
(I)估计第一车间生产时间小于75min的工人人数为(人).估计第二车间生产时间小于75min的工人人数为(人);(II)分别计算两车间工人生产时间的平均值,再推测哪个车间工人的生产效率更高;(III)由题得X可取值为0,1,2,再分别求出概率,列出分布列,求出数学期望.
(I)估计第一车间生产时间小于75min的工人人数为(人).
估计第二车间生产时间小于75min的工人人数为(人).
(II)第一车间生产时间平均值约为(min).
第二车间生产时间平均值约为
(min).
∴第二车间工人生产效率更高.
(III)由题意得,第一车间被统计的生产时间小于75min的工人有6人,其中生产时间小于65min的有2人,从中抽取3人,随机变量X服从超几何分布,
X可取值为0,1,2,
,
,
.
X的分布列为:
X | 0 | 1 | 2 |
P |
所以数学期望.
科目:高中数学 来源: 题型:
【题目】给出下列四个说法,其中正确的是( )
A.命题“若,则”的否命题是“若,则”
B.“”是“双曲线的离心率大于”的充要条件
C.命题“,”的否定是“,”
D.命题“在中,若,则是锐角三角形”的逆否命题是假命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)已知数列为等差数列,其前n项和为.若,试分别比较与、与的大小关系.
(2)已知数列为等差数列,的前n项和为.证明:若存在正整数k,使,则.
(3)在等比数列中,设的前n项乘积,类比(2)的结论,写出一个与有关的类似的真命题,并证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l经过抛物线y2=6x的焦点F,且与抛物线相交于A,B两点.
(1)若直线l的倾斜角为60°,求|AB|的值;
(2)若|AB|=9,求线段AB的中点M到准线的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正四面体ABCD的体积为1,O为其中心,正四面体EFGH与正四面体ABCD关于点O对称,则这两个正四面体的公共部分的体积为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若曲线在点处的切线与直线垂直,求函数的单调区间;
(2)若对于任意都有成立,试求的取值范围;
(3)记.当时,函数在区间上有两个零点,求实数的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com