精英家教网 > 高中数学 > 题目详情

【题目】(2018·长沙二模)在平面几何中有如下结论:正三角形ABC的内切圆面积为S1外接圆面积为S2,则.推广到空间可以得到类似结论:已知正四面体PABC的内切球体积为V1,外接球体积为V2,则________.

【答案】

【解析】由平面图形类比空间图形,由二维类比三维,如图,设正四面体PABC的棱长为aE为等边三角形ABC的中心,O为内切球与外接球的球心,则AEaPEa.OAROEr,则raR,又在RtAOE中,OA2OE2AE2,即R222Rara∴正四面体的外接球和内切球的半径之比是31,故正四面体PABC的内切球体积V1与外接球体积V2之比等于127,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示的几何体是由棱台和棱锥拼接而成的组合体,其底面四边形是边长为2的菱形,平面.

(1)求证:

(2)求平面与平面所成锐角二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司近年来特别注重创新产品的研发,为了研究年研发经费(单位:万元)对年创新产品销售额(单位:十万元)的影响,对近10年的研发经费与年创新产品销售额(其中)的数据作了初步处理,得到如图的散点图及一些统计量的值.

其中

.现拟定关于的回归方程为.

1)求的值(结果精确到)

2)根据拟定的回归方程,预测当研发经费为万元时,年创新产品销售额是多少?

参考公式:

求线性回归方程系数公式 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中,为边的中点,将沿直线翻转为.若为线段的中点,则在翻转过程中,有下列命题:

是定值;

②点在圆上运动;

③一定存在某个位置,使

④若平面,则平面

其中正确的个数为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知 是椭圆的左右焦点, 为椭圆的上顶点,点在椭圆上,直线轴的交点为 为坐标原点,且

(1)求椭圆的方程;

(2)过点作两条互相垂直的直线分别与椭圆交于 两点(异于点),证明:直线过定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】流行性感冒多由病毒引起,据调查,空气相对湿度过大或过小时,都有利于一些病毒的繁殖和传播.科学测定,当空气相对湿度大于65%或小于40%时,病毒繁殖滋生较快,当空气相对湿度在45%—55%时,病毒死亡较快,现随机抽取了全国部分城市,获得了它们的空气月平均相对湿度共300个数据,整理得到数据分组及频数分布表,其中为了记录方便,将空气相对湿度在%~%时记为区间

(I)求上述数据中空气相对湿度使病毒死亡较快的频率;

(Ⅱ)从区间[ 15,35)的数据中任取两个数据,求恰有一个数据位于[25,35)的概率;

(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中空气月平均相对湿度的平均数在第几组(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在即将进入休渔期时,某小微企业决定囤积一些冰鲜产品,销售所囤积产品的净利润f(x)万元与投入x万元之间近似满足函数关系:,若投入2万元,可得到净利润为5.2万元.

(1)试求该小微企业投入多少万元时,获得的净利润最大;

(2)请判断该小微企业是否会亏本,若亏本,求出投入资金的范围,若不亏本,请说明理由.(参考数据:ln 2≈0.7,ln 15≈2.7)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为

(Ⅰ)求的解析式;

(Ⅱ)当,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 是边长为3的等边三角形,四边形为正方形,平面平面.点分别为上的点,且,点上的一点,且.

(Ⅰ)当时,求证: 平面

(Ⅱ)当时,求三棱锥的体积.

查看答案和解析>>

同步练习册答案