精英家教网 > 高中数学 > 题目详情
判断函数f(x)=
x(x≥0)
-x(x<0)
在x=0处是否可导.
分析:先分段求导,再比较两个导数的数值.
解答:解:当x>0时,y′=1;当x<0时,y′=-1
∴f(x)在x=0处不可导.
点评:注意到函数在某一点的导数存在的充要条件是函数在这点处的左极限和右极限均存在且相等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于定义域为G的函数f(x),如果同时满足下列两个条件:①f(x)在G内是单调函数;②存在区间[a,b]⊆G,使f(x)在[a,b]上的值域亦为[a,b],那么就称f(x)为好函数.
(Ⅰ)判断函数f(x)=
lnx
ex
+1在(0,+∞)上是否为好函数?并说明理由;
(Ⅱ)求好函数f(x)=-x3+1符合条件的一个区间[a,b];
(Ⅲ)若函数f(x)=m+
x+2
是好函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为D:(-∞,0)∪(0,+∞),且满足对于任意x,y∈D,有f(xy)=f(x)+f(y).
(I)求f(1),f(-1)的值;
(II)判断f(x)的奇偶性并说明理由;
(III)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足对任意实数x,y都有f(x+y)=f(x)+f(y)+1成立,且当x>0时,f(x)>-1,f(1)=0.
(1)求f(5)的值;
(2)判断f(x)在R上的单调性,并证明;
(3)若对于任意给定的正实数ε,总能找到一个正实数σ,使得当|x-x0|<σ时,|f(x)-f(x0)|<ε,则称函数f(x)在x=x0处连续.试证明:f(x)在x=0处连续.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(2+3x)-
3
2
x2
(1)求函数y=f(x)的极大值;
(2)令g(x)=f(x)+
3
2
x2+(m-1)x(m为实常数),试判断函数g(x)的单调性;
(3)若对任意x∈[
1
6
1
3
]
,不等式|a-lnx|+ln[f′(x)+3x]>0均成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为A,值域为B,如果存在函数x=g(t),使得函数y=f(g(t))的值域仍然是B,那么称函数x=g(t)是函数f(x)的一个等值域变换.
(1)判断下列函数x=g(t)是不是函数f(x)的一个等值域变换?说明你的理由.
①f(x)=2x+1,x∈R,x=g(t)=t2-2t+3,t∈R;
②f(x)=x2-x+1,x∈R,x=g(t)=2t,t∈R;
(2)设函数f(x)=log2(x2-x+1),g(t)=at2+2t+1,若函数x=g(t)是函数f(x)的一个等值域变换,求实数a的取值范围.

查看答案和解析>>

同步练习册答案