精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=2x+2,则f(2)的值为(  )
A.2B.3C.4D.6

分析 把x=2代入函数表达式,能求出f(2)的值.

解答 解:∵函数f(x)=2x+2,
∴f(2)=22+2=6.
故选:D.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.设a∈R,若函数y=aex+3x有大于零的极值点,则实数a的取值范围是(-3,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.当|OP|=|OM|时,则直线l的斜率(  )
A.k=3B.k=-3C.k=$\frac{1}{3}$D.k=-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.点M是抛物线x2=2py(p>0)的对称轴与准线的交点,点F为抛物线的焦点,P在抛物线上,在△PFM中,sin∠PFM=λsin∠PMF,则λ的最大值为(  )
A.$\frac{{\sqrt{2}}}{2}$B.1C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.空间中两点A(3,-2,5),B(6,0,-1)之间的距离为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知tanθ=4,则$\frac{sinθ+cosθ}{17sinθ}+\frac{{si{n^2}θ}}{4}$的值为(  )
A.$\frac{14}{68}$B.$\frac{21}{68}$C.$\frac{68}{14}$D.$\frac{68}{21}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|2x-a|+a,a∈R,g(x)=|2x-1|
(1)当a=2时,求满足f(x)≥g(2)的x的值.
(2)当x∈R时,恒有f(x)+g(x)≥3,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数$f(x)=cos(2x+\frac{π}{3})+{sin^2}x$,则f(x)的最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数y=sin(2x+φ)+1的图象关于直线$x=-\frac{π}{8}$对称,则φ的可能取值是(  )
A.$\frac{3π}{4}$B.$-\frac{3π}{4}$C.$\frac{π}{4}$D.$\frac{π}{2}$

查看答案和解析>>

同步练习册答案