精英家教网 > 高中数学 > 题目详情
已知圆C:x2+y2-4x+2y+1=0,直线l:y=kx-1.
(1)当k为何值时直线l过圆心;
(2)是否存在直线l与圆C交于A,B两点,且△ABC的面积为2?如果存在,求出直线l的方程,如果不存在,请说明理由;
(3)设P(x,y)为圆C上一动点,求
y+3x+1
的最值.
分析:(1)求出圆的圆心坐标,代入直线方程,即可求出k的值,此时直线l过圆心;
(2)△ABC的面积为2,必须AC⊥BC,求出圆心到直线的距离为:
2
,然后求出k的值即可求出直线方程;
(3)设P(x,y)为圆C上一动点,求
y+3
x+1
的最值,就是圆上的点与(-1,-3)连线的斜率的范围,如图,求解即可.
解答:解:(1)圆C:x2+y2-4x+2y+1=0,圆心坐标为:(2,-1),半径为2,所以-1=2k-1,所以k=0时直线l过圆心;
(2)存在直线l与圆C交于A,B两点,且△ABC的面积为2,此时
1
2
AC•BC•sin∠ACB=2
,所以AC⊥BC,则圆心到直线的距离为:
2
2
=
|2k+1-1|
1+k2

解得k=±1,直线l的方程为:y=±x-1.
(3)如图P(x,y)为圆C上一动点,求
y+3
x+1
的最值,就是圆上的点与(-1,-3)连线的斜率的范围,
显然设
y+3
x+1
=k
,所以
|3k-2|
1+k2
=2
,解得k=0,k=
12
5
;最小值为:0;最大值为:
12
5

精英家教网
点评:本题是中档题,考查直线与圆的位置关系,点到直线的距离的应用,考查计算能力,数形结合的思想,转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:x2+y2-6x-4y+8=0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件双曲线的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)一个圆与x轴相切,圆心在直线3x-y=0上,且被直线x-y=0所截得的弦长为2
7
,求此圆方程.
(2)已知圆C:x2+y2=9,直线l:x-2y=0,求与圆C相切,且与直线l垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区一模)如图,已知圆C:x2+y2=r2与x轴负半轴的交点为A.由点A出发的射线l的斜率为k,且k为有理数.射线l与圆C相交于另一点B.
(1)当r=1时,试用k表示点B的坐标;
(2)当r=1时,试证明:点B一定是单位圆C上的有理点;(说明:坐标平面上,横、纵坐标都为有理数的点为有理点.我们知道,一个有理数可以表示为
qp
,其中p、q均为整数且p、q互质)
(3)定义:实半轴长a、虚半轴长b和半焦距c都是正整数的双曲线为“整勾股双曲线”.
当0<k<1时,是否能构造“整勾股双曲线”,它的实半轴长、虚半轴长和半焦距的长恰可由点B的横坐标、纵坐标和半径r的数值构成?若能,请尝试探索其构造方法;若不能,试简述你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)已知圆C:x2+y2=r2(r>0)与抛物线y2=40x的准线相切,若直线l:
x
a
y
b
=1
与圆C有公共点,且公共点都为整点(整点是指横坐标.纵坐标都是整数的点),那么直线l共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2=4与直线L:x+y+a=0相切,则a=(  )

查看答案和解析>>

同步练习册答案