精英家教网 > 高中数学 > 题目详情
如图,已知正方形的边长为10,向正方形内随机地撒200颗黄豆,数得落在阴影外的黄豆数为114颗,以此实验数据为依据,可以估计出阴影部分的面积约为( )

A.53
B.43
C.47
D.57
【答案】分析:本题利用几何概型求解.由于是向正方形内随机地撒200颗黄豆,其落在阴影外的概率是阴影外的面积与整个正方形的面积之比,从而可列式求得阴影部分的面积.
解答:解:设阴影外部分的面积为s,
则由几何概型的概率公式得:

解得s=57,
可以估计出阴影部分的面积约为100-57=43.
故选B.
点评:本题主要考查了几何概型,以及利用几何意义求面积,属于基础题.简单地说,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知正方形的边长为10,向正方形内随机地撒200颗黄豆,数得落在阴影外的黄豆数为114颗,以此实验数据为依据,可以估计出阴影部分的面积约为(  )
A、53B、43C、47D、57

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知正方形的边长为1,在正方形ABCD中有两个相切的内切圆.
(1)求这两个内切圆的半径之和;
(2)当这两个圆的半径为何值时,两圆面积之和有最小值?当这两个圆的半径为何值时,两圆面积之和有最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网第8题的题干为:如图,已知正方形的边长为1,在正方形ABCD中有两个相切的内切圆.
(1)求这两个内切圆的半径之和;
(2)当这两个圆的半径为何值时,两圆面积之和有最小值?当这两个圆的半径为何值时,两圆面积之和有最大值?
变式(1)在第8题中,若正方形改为矩形,情况又如何?
(2)在第8题中,若正方形改为正方体,圆改为球,情况如何?

查看答案和解析>>

科目:高中数学 来源:2014届福建省高二上学期期末考试理科数学试卷(解析版) 题型:选择题

如图,已知正方形的边长为分别是的中点,⊥平面,且,则点到平面的距离为

A.            B.           C.               D.1

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河北省高三调研理科数学试卷(3) 题型:解答题

如图,已知正方形的边长为1,平面平面边上的动点。

(1)证明:平面;                    

(2)试探究点的位置,使平面平面

 

 

 

查看答案和解析>>

同步练习册答案