【题目】圆心在直线x﹣2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2 ,求圆C的标准方程.
【答案】解:设圆心为(2t,t),半径为r=|2t|, ∵圆C截x轴所得弦的长为2 ,
∴t2+3=4t2 ,
∴t=±1,
∵圆C与y轴的正半轴相切,
∴t=﹣1不符合题意,舍去,
故t=1,2t=2,
∴(x﹣2)2+(y﹣1)2=4.
圆C的标准方程为:(x﹣2)2+(y﹣1)2=4.
【解析】由圆心在直线x﹣2y=0上,设出圆心坐标,再根据圆与y轴相切,得到圆心到y轴的距离即圆心横坐标的绝对值等于圆的半径,表示出半径r,由弦长的一半,圆的半径r及表示出的d利用勾股定理列出关于t的方程,求出方程的解得到t的值,从而得到圆心坐标和半径,根据圆心和半径写出圆的方程即可.
【考点精析】掌握圆的标准方程是解答本题的根本,需要知道圆的标准方程:;圆心为A(a,b),半径为r的圆的方程.
科目:高中数学 来源: 题型:
【题目】已知⊙C:(x﹣1)2+(y﹣2)2=25,直线l:(2m+1)x+(m+1)y﹣7m﹣4=0(m∈R)
(1)求证:对任意m∈R,直线l与⊙C恒有两个交点;
(2)求直线l被⊙C截得的线段的最短长度,及此时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体ABCD﹣A1B1C1D1的棱长为1,E,F是线段B1D上的两个动点,且EF= ,则下列结论错误的是( )
A.AC⊥BF
B.直线AE,BF所成的角为定值
C.EF∥平面ABC
D.三棱锥A﹣BEF的体积为定值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上的奇函数,当x≤0时,f(x)=x(2+x).
(1)求函数f(x)的解析式;
(2)画出函数f(x)的图象,并写出单调区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】各项均为正数的数列{an}中,a1=1,Sn是数列{an}的前n项和,对任意n∈N* , 有2Sn=2pan2+pan﹣p(p∈R)
(1)求常数p的值;
(2)求数列{an}的通项公式;
(3)记bn= ,求数列{bn}的前n项和T.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C1:x2+y2﹣3x﹣3y+3=0,圆C2:x2+y2﹣2x﹣2y=0.
(1)求两圆的公共弦所在的直线方程及公共弦长.
(2)求过两圆交点且面积最小的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为吸引顾客,某公司在商场举办电子游戏活动.对于两种游戏,每种游戏玩一次均会出现两种结果,而且每次游戏的结果相互独立,具体规则如下:玩一次游戏,若绿灯闪亮,获得分,若绿灯不闪亮,则扣除分(即获得分),绿灯闪亮的概率为;玩一次游戏,若出现音乐,获得分,若没有出现音乐,则扣除分(即获得分),出现音乐的概率为.玩多次游戏后累计积分达到分可以兑换奖品.
(1)记为玩游戏和各一次所得的总分,求随机变量的分布列和数学期望;
(2)记某人玩次游戏,求该人能兑换奖品的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=3x , x∈[﹣1,1],函数g(x)=[f(x)]2﹣2af(x)+3.
(1)当a=0时,求函数g(x)的值域;
(2)若函数g(x)的最小值为h(a),求h(a)的表达式;
(3)是否存在实数m,n同时满足下列两个条件:①m>n>3;②当h(a)的定义域为[n,m]时,值域为[n2 , m2]?若存在,求出m,n的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com