精英家教网 > 高中数学 > 题目详情

【题目】已知圆 和点,动圆经过点且与圆相切,圆心的轨迹为曲线

(1)求曲线的方程;

(2)点是曲线轴正半轴的交点,点 在曲线上,若直线 的斜率分别是 ,满足,求面积的最大值.

【答案】(1);(2).

【解析】试题分析:(1)分析条件可得圆心满足条件>,从而可得曲线EMN为焦点,长轴长为的椭圆,可得椭圆的方程;(2)设直线的方程为代入椭圆方程消去x整理得到关于y的方程,进一步可得

,由可求得,从而,从而

可得 ,从而可得三角形面积的最大值。

试题解析:

1)由题意得圆的圆心为,半径为

在圆内,因为动圆经过点且与圆相切,所以动圆与圆内切。

设动圆半径为,则 .

因为动圆经过点,所以, >,

所以曲线EMN为焦点,长轴长为的椭圆.

设椭圆的方程为

,

∴曲线的方程为

(2)当直线的斜率为0时,不合题意;

设直线的方程为

消去x整理得

由条件得点A坐标为(1,0),

=.

解得

故直线BC过定点(20),

,解得

当且仅当时取等号。

综上面积的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】莫数学建模兴趣小组测量某移动信号塔的高度(单位: ),如图所示,垂直放置的标杆的高度,仰角 .

(Ⅰ)该小组已经测得一组的值, ,请推测的值;

(Ⅱ)该小组对测得的多组数据分析后,发现适当调节标杆到信号塔的距离(单位: ),使得较大时,可以提高信号塔测量的精确度,若信号塔高度为,试问为多大时, 最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+2ax+2,
(1)求实数a的取值范围,使函数y=f(x)在区间[﹣5,5]上是单调函数;
(2)若x∈[﹣5,5],记y=f(x)的最大值为g(a),求g(a)的表达式并判断其奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线)与椭圆相交于两个不同的点,与轴相交于点,记为坐标原点.

(1)证明:

(2)若,求的面积取得最大值时的椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= + 的定义域为(
A.[﹣2,0)∪(0,2]
B.(﹣1,0)∪(0,2]
C.[﹣2,2]
D.(﹣1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a是实数,f(x)=a﹣ (x∈R).
(1)证明不论a为何实数,f(x)均为增函数;
(2)若f(x)满足f(﹣x)+f(x)=0,解关于x的不等式f(x+1)+f(1﹣2x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,点 的极坐标是,曲线 的极坐标方程为.以极点为坐标原点,极轴为 轴的正半轴建立平面直角坐标系,斜率为 的直线 经过点.

(1)写出直线 的参数方程和曲线 的直角坐标方程;

(2)若直线 和曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,点在椭圆上.

1求椭圆的方程;

2过点的直线,交椭圆两点,点在椭圆上,坐标原点恰为的重心,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了普及环保知识,增强环保意识,某校从理科甲班抽取60人,从文科乙班抽取50人参加环保知识测试.

优秀人数

非优秀人数

总计

甲班

乙班

30

总计

60

(Ⅰ)根据题目完成列联表,并据此判断是否有的把握认为环保知识成绩优秀与学生的文理分类有关.

(Ⅱ)现已知 三人获得优秀的概率分别为 ,设随机变量表示 三人中获得优秀的人数,求的分布列及期望

附:

0.100

0.050

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

同步练习册答案