精英家教网 > 高中数学 > 题目详情
10.已知x=$\frac{π}{6}$是函数f(x)=(asinx+cosx)cosx-$\frac{1}{2}$图象的一条对称轴.
(1)求函数f(x)的单调增区间;
(2)作出函数f(x)在x∈[0,π]上的图象简图.

分析 (1)化简函数f(x),求出a的值,得出f(x)的解析式,从而求出f(x)的单调增区间;
(2)利用列表、描点、连线,画出函数f(x)在x∈[0,π]上的图象即可.

解答 解:(1)∵f(x)=(asinx+cosx)cosx-$\frac{1}{2}$
=asinxcosx+cos2x-$\frac{1}{2}$
=$\frac{1}{2}$asin2x+$\frac{1}{2}$cos2x,
且x=$\frac{π}{6}$是函数f(x)图象的一条对称轴,
所以f(0)=f($\frac{π}{3}$),
即$\frac{1}{2}$=$\frac{a}{2}$sin2($\frac{π}{3}$)+$\frac{1}{2}$cos2($\frac{π}{3}$),
解得a=$\sqrt{3}$,
所以f(x)=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x=sin(2x+$\frac{π}{6}$);
令-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,k∈Z,
则-$\frac{2π}{3}$+2kπ≤2x≤$\frac{π}{3}$+2kπ,k∈Z,
解得-$\frac{π}{3}$+kπ≤x≤$\frac{π}{6}$+kπ,k∈Z;
即函数f(x)的增区间为[-$\frac{π}{3}$+kπ,$\frac{π}{6}$+kπ],k∈Z; …(5分)
(2)列表如下,

x0$\frac{π}{6}$$\frac{5π}{12}$$\frac{2π}{3}$$\frac{11π}{12}$π
2x+$\frac{π}{6}$$\frac{π}{6}$$\frac{π}{2}$π$\frac{3π}{2}$$\frac{13π}{6}$
f(x)$\frac{1}{2}$10-10$\frac{1}{2}$
画出函数f(x)在x∈[0,π]上的图象如图所示.…(10分)

点评 本题考查了三角函数的图象与性质的应用问题,也考查了五点法画正弦函数图象的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$($\overrightarrow{a}$,$\overrightarrow{b}$为非零向量),且∠AOB=90°,则|$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$+$\frac{\overrightarrow{b}}{|\overrightarrow{b}|}$|=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}中,an=11-5n,则数列{|an|}的前15项和为(  )
A.442B.449C.428D.421

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知正项等比数列{an}满足:a7=a6+2a5,若存在两项am,an使得$\sqrt{{a}_{m}{a}_{n}}$=4a1,则$\frac{1}{m}$+$\frac{5}{n}$的最小值为(  )
A.$1+\frac{{\sqrt{5}}}{3}$B.$\frac{7}{4}$C.2D.$\frac{11}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.直线2x+3y-6=0交x、y轴于A、B两点,试在直线y=-x上求一点P,使|PA|+|PB|最小,则P点的坐标是(0,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=$\frac{ln(x+1)}{\sqrt{-{x}^{2}-3x+4}}$的定义域为(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.不等式$\frac{3}{x+1}≥1$的解集是(-1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.△ABC的内角A,B,C所对的边分别为a,b,c,且A,B,C成等差数列.命题p:“a,b,c成等比数列”;命题q:“△ABC是等边三角形”.则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}中,a1=2,a2n=an+1,a2n+1=n-an,则{an}的前100项和为(  )
A.1250B.1276C.1289D.1300

查看答案和解析>>

同步练习册答案