精英家教网 > 高中数学 > 题目详情

【题目】已知正方体的棱长为2为体对角线上的一点,且,现有以下判断:①;②若平面,则;③周长的最小值是;④若为钝角三角形,则的取值范围为,其中正确判断的序号为______.

【答案】①②④

【解析】

利用线面垂直证明线线垂直,由此判断①正确.在直角三角形中,利用射影定理求得,由此判断②正确.将展开成平面,由此求得的最小值,进而求得三角形周长的最小值,由此判断③错误.先求得为直角三角形时的值,由此确定的取值范围

在正方体中,平面,又平面,故,①正确;

平面,在中,,由于,由射影定理得,即,可得,故②正确;

展开,可得的最小值为,又,故③错误;

利用平面,可得当为直角三角形时,,故当为钝角三角形时,的取值范围为,④正确.

所以正确判断为①②④.

故答案为:①②④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为其右顶点为,下顶点为,定点的面积为过点作与轴不重合的直线交椭圆两点,直线分别与轴交于两点.

1)求椭圆的方程;

2)试探究的横坐标的乘积是否为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线的极坐标方程为,曲线的极坐标方程为

(l)设为参数,若,求直线的参数方程;

2)已知直线与曲线交于,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)讨论的单调性;

2)若存在3个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某教师为了分析所任教班级某次考试的成绩,将全班同学的成绩作成统计表和频率分布直方图如下:

分组

频数

频率

[50,60)

3

0.06

[60,70)

m

0.10

[70,80)

13

n

[80,90)

p

q

[90,100]

9

0.18

总计

t

1

(1)求表中tq及图中a的值;

(2)该教师从这次考试成绩低于70分的学生中随机抽取3人进行谈话,设X表示所抽取学生中成绩低于60分的人数,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若时,讨论在区间上零点个数;

2)若当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据报道,全国很多省市将英语考试作为高考改革的重点,一时间英语考试该如何改革引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人进行调查,就是否取消英语听力问题进行了问卷调查统计,结果如下表:

态度

调查人群

应该取消

应该保留

无所谓

在校学生

2100

120

社会人士

600

(1)已知在全体样本中随机抽取人,抽到持应该保留态度的人的概率为,现用分层抽样的方法在所有参与调查的人中抽取人进行问卷访谈,问应在持无所谓态度的人中抽取多少人?

(2)在持应该保留态度的人中,用分层抽样的方法抽取人,再平均分成两组进行深入交流,求第一组中在校学生人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面为等边三角形,分别为的中点.

(1)求证:平面

(2)求证:平面平面

(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆C (a>b>0)的离心率为,右焦点F到右准线的距离为3.

(1)求椭圆C的方程;

(2)过点F作直线l (不与x 轴重合)和椭圆C交于M N两点,设点.

①若的面积为,求直线l方程;

②过点M作与)轴垂直的直线l"和直线NA交于点P,求证:点P在一条定直线上.

查看答案和解析>>

同步练习册答案