精英家教网 > 高中数学 > 题目详情
20.若变量x,y满足x+5y+13=0(-3≤x≤2,且x≠1),则$\frac{y-1}{x-1}$的取值范围是(  )
A.k≥$\frac{3}{4}$或k≤-4B.-4≤k≤$\frac{3}{4}$C.$\frac{3}{4}$≤k≤4D.-$\frac{3}{4}$≤k≤4

分析 如图所示,P(1,1),A(2,-3),C(-3,-2),利用斜率计算公式及其斜率的意义即可得出.

解答 解:如图所示,
∵P(1,1),A(2,-3),C(-3,-2),
kPA=$\frac{-3-1}{2-1}$=-4,kPC=$\frac{-2-1}{-3-1}$=$\frac{3}{4}$.
∴则$\frac{y-1}{x-1}$的取值范围是k≥$\frac{3}{4}$或k≤-4.
故选:A.

点评 本题考查了斜率计算公式及其斜率的意义,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知:函数f(x)=sin2x+2$\sqrt{3}$sinxcosx-cos2
(1)求函数f(x)的最小正周期及当x∈[0,$\frac{π}{2}$]时,求f(x)的值域.;
(2)若y=f(x)的图象在[0,m]上恰好有两个点的纵坐标为1,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图所示,在△ABC中,$\overrightarrow{AB}$•$\overrightarrow{BC}$=$\frac{\overrightarrow{BC}•\overrightarrow{CA}}{2}$=$\frac{\overrightarrow{CA}•\overrightarrow{AB}}{3}$,则tanA:tanB:tanC=2:6:3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,若$\frac{tanC}{tanA}$+$\frac{tanC}{tanB}$=1,则$\frac{si{n}^{2}A+si{n}^{2}B}{si{n}^{2}C}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图所示的程序框图,若输出的S=63,则判断框内填入的条件是(  )
A.i>5?B.i>6?C.i≤5?D.i≤6?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线(a-1)x+(a+1)y+8=0与(a2-1)x+(2a+1)y-7=0平行,则a值为(  )
A.0B.1C.0或1D.0或-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知一个四面体的所有棱长都为2,则该四面体的外接球表面积为6π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数为奇函数的是(  )
A.f(x)=$\sqrt{1+x}+\sqrt{1-x}$B.f(x)=x3-1C.f(x)=$\sqrt{1+x}-\sqrt{1-x}$D.f(x)=-$\frac{1}{x^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在周长为6的△ABC中,∠ABC=60°,点P在边AB上,PH⊥CA于H(点H在边CA上),且PH=$\frac{\sqrt{3}}{2}$,CP=$\frac{\sqrt{7}}{2}$,则边CA的长为2.1.

查看答案和解析>>

同步练习册答案