精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,已知△ABC的顶点A,B的坐标分别为A(-3,0),B(3,0),△ABC的周长为16,
(Ⅰ)求顶点C的轨迹方程;
(Ⅱ)过点A作直线,与(Ⅰ)中的曲线交于M,N两点,试判断是否存在最小值,若存在,求出最小值;若不存在,请说明理由。
解:(Ⅰ)∵|CA|+|CB|=10为定值,
所以C点的轨迹是以A,B为焦点的椭圆,焦距2c=6,
设椭圆为方程,且2a=10,
易得a=5,c=3,b=4,
所以C点的轨迹方程为
(Ⅱ)设M(x1,y1),N(x2,y2),
当直线MN的倾斜角不为90°时,设其方程为y=k(x+3)(k≠0),
代入椭圆方程化简,得
显然有

同理
所以


只要考虑的最小值,即考虑取最小值,
而k≠0,所以上式无最小值,
显然k=0时,取最小值16;
当直线MN的倾斜角为90°时,x1=x2=-3,

的最小值不存在。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,双曲线中心在原点,焦点在y轴上,一条渐近线方程为x-2y=0,则它的离心率为(  )
A、
5
B、
5
2
C、
3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知直线l的参数方程为
x=2t-1 
y=4-2t .
(参数t∈R),以直角坐标原点为极点,x轴的正半轴为极轴建立相应的极坐标系.在此极坐标系中,若圆C的极坐标方程为ρ=4cosθ,则圆心C到直线l的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程) 在平面直角坐标系xOy中,圆C的参数方程为
x=2cosθ
y=2sinθ+2
 (参数θ∈[0,2π)),若以原点为极点,射线ox为极轴建立极坐标系,则圆C的圆心的极坐标为
 
,圆C的极坐标方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广东)在平面直角坐标系xOy中,直线3x+4y-5=0与圆x2+y2=4相交于A、B两点,则弦AB的长等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.
(Ⅰ)若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,求sin(α+β)的值;
(Ⅱ) 若|AB|=
3
2
,求
OA
OB
的值.

查看答案和解析>>

同步练习册答案