精英家教网 > 高中数学 > 题目详情
10.设数列{xn}满足0<x1<π,xn+1=sinxn(n=1,2,…),证明$\underset{lim}{n→∞}$xn存在极限,并求该极限.

分析 0<xn+1=sinxn≤1,可得:当n≥2时,xn+1=sinxn<xn,数列{xn}满足单调递减且有界,因此$\underset{lim}{n→∞}$xn存在,解出即可.

解答 证明:∵0<xn+1=sinxn≤1,
∴当n≥2时,xn+1=sinxn<xn
∴数列{xn}满足单调递减且有界,
因此$\underset{lim}{n→∞}$xn存在,
设$\underset{lim}{n→∞}$xn=x,
则x=sinx,
解得x=0,
∴$\underset{lim}{n→∞}$xn=0.

点评 本题考查了单调有界数列必有极限的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知椭圆方程为$\frac{1}{9}{x^2}+{y^2}$=1,过左焦点作倾斜角为$\frac{π}{6}$的直线交椭圆于A,B两点,
(1)求弦AB的长;
(2)求△ABO的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.以直角坐标系的原点为极点,x轴的正半轴为极轴且单位长度一致建立极坐标系.已知直线l的参数方程为$\left\{\begin{array}{l}x=t\\ y=t-a\end{array}$(t为参数),圆C的极坐标方程为ρ=2cosθ,若直线l经过圆C的圆心,则常数a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设F1,F2分别为椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右两个焦点,点$A(1,\;\;\frac{3}{2})$在椭圆上,且点A到F1,F2两点的距离之和等于4.
(1)求椭圆的方程.
(2)若K为椭圆C上的一点,且∠F1KF2=30°,求△F1KF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1,则直线y=$\frac{\sqrt{3}}{2}$x与C有0个公共点;若直线y=k(x-3)与C只有一个公共点.则k取值范围为{-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0.b>0)上任意一点M(非短轴的端点)与短轴的两个端点 B1、B2的连线交x轴于N和K,求证:|ON|•|OK|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.将直线l向上平移2个单位后得到直线11经过点P(2,2),再将直线l1绕点P旋转90°后得到的直线l2过点(4,-2),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,已知b=asinC,c=asinB,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,AD⊥平面ABC,CE⊥平面ABC,CE=2AD,AC=AB=1,BC=$\sqrt{2}$,证明:
(1)AB⊥平面ACED;
(2)平面BDE⊥平面BCE.

查看答案和解析>>

同步练习册答案