精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为.

(1)求圆的直角坐标方程;

(2)设圆与直线交于点,若点的坐标为,求的最小值.

【答案】(1)x2+(y-3)2=9.(2)

【解析】试题分析:(1)根据 将圆的极坐标方程转化为直角坐标方程(2)由直线参数方程得,所以将直线参数方程代入圆直角坐标方程得t2+2(cosα-sinα)t-7=0,利用韦达定理化简得,最后根据三角函数有界性求最小值.

试题解析:(1)由ρ=6sinθ得ρ2=6ρsinθ,化为直角坐标方程为x2+y2=6y,即x2+(y-3)2=9.

(2)将的参数方程代入圆C的直角坐标方程,得t2+2(cosα-sinα)t-7=0.

由△=4(cosα-sinα)2+4×7>0,故可设t1,t2是上述方程的两根,

所以

又由直线过点(1,2),故,结合参数的几何意义得

,当时取等.

所以|PA|+|PB|的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn , 已知a3=24,S11=0.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an}的前n项和Sn
(Ⅲ)当n为何值时,Sn最大,并求Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)= ,则称函数y=f(x)是[a,b]上的“平均值函数”,x0是它的一个均值点.例如y=|x|是[﹣2,2]上的平均值函数,0就是它的均值点.若函数f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函数”,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是(
A.57.2,3.6
B.57.2,56.4
C.62.8,63.6
D.62.8,3.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12分)如图,底面是正三角形的直三棱柱中,D是BC的中点,.

)求证:平面

)求的A1 到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品共有100件,其中一、二、三、四等品的个数比为4:3:2:1,采用分层抽样的方法抽取一个样本,若从一等品中抽取8件,从三等品和四等品中抽取的个数分别为a,b,则直线ax+by+8=0上的点到原点的最短距离为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 对任意的正整数n,都有an=5Sn+1成立,记bn= (n∈N*).
(1)求数列{an}和数列{bn}的通项公式;
(2)设数列{bn}的前n项和为Rn , 求证:对任意的n∈N* , 都有Rn<4n;
(3)记cn=b2n﹣b2n1(n∈N*),设数列{cn}的前n项和为Tn , 求证:对任意n∈N* , 都有Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方形ABCD的顶点坐标分别为A(0,1),B(2,0),C(3,2).
(1)求CD边所在直线的方程;
(2)求以AC为直径的圆M的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若二次函数y=f(x)的图象经过原点,且1≤f(﹣1)≤2,3≤f(1)≤4,求f(﹣2)的范围.

查看答案和解析>>

同步练习册答案