精英家教网 > 高中数学 > 题目详情
18.在极坐标系中,直线C1的极坐标方程为$ρsin(θ+\frac{π}{4})=\sqrt{2}$.若以极点为原点,极轴为x轴的正半轴建立平面直角坐标系xOy,则直线C1的直角坐标方程为x+y-2=0;曲线C2的方程为$\left\{\begin{array}{l}x=cost\\ y=1+sint\end{array}\right.$(t为参数),则C2被 C1截得的弦长为$\sqrt{2}$.

分析 利用三种方程的转化方法,求出普通方程,求出圆心到直线的距离,即可求出弦长.

解答 解:直线C1的极坐标方程为$ρsin(θ+\frac{π}{4})=\sqrt{2}$,即ρsinθ+ρcosθ=2,∴直线C1的直角坐标方程为x+y-2=0,
曲线C2的方程为$\left\{\begin{array}{l}x=cost\\ y=1+sint\end{array}\right.$(t为参数),普通方程为x2+(y-1)2=1,
圆心到直线的距离d=$\frac{1}{\sqrt{2}}$,∴C2被 C1截得的弦长为2$\sqrt{1-\frac{1}{2}}$=$\sqrt{2}$,
故答案为x+y-2=0,$\sqrt{2}$.

点评 本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、弦长,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.函数f(x)=$\left\{\begin{array}{l}lnx({x>0})\\-\sqrt{-x}({x≤0})\end{array}$与g(x)=|x+a|+1的图象上存在关于y轴对称的点,则实数a的取值范围是(  )
A.RB.(-∞,-e]C.[e,+∞)D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax-lnx,g(x)=ex+ax.
(1)若a<0.
(i)试探讨函数f(x)的单调性;
(ii)若函数f(x)和g(x)在区间(0,ln3)上具有相同的单调性,求实数a的取值范围;
(2)设函数h(x)=x2-f(x)有两个极值点x1,x2,且x1∈(0,$\frac{1}{2}$),求证:h(x1)-h(x2)>$\frac{3}{4}$-ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数:①f(x)=2sin(2x+$\frac{π}{3}$);②f(x)=2sin(2x-$\frac{π}{6}$);③f(x)=2sin($\frac{1}{2}$x+$\frac{π}{3}$);④f(x)=2sin(2x-$\frac{π}{3}$),其中,最小正周期为π且图象关于直线x=$\frac{π}{3}$对称的函数序号是②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,P为正方体ABCD-A1B1C1D1中AC1与BD1的交点,则△PAC在该正方体各个面上的射影可能是(  )
A.①②③④B.①③C.①④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|-1≤x<3},B={x∈Z|x2<4},则A∩B=(  )
A.{0,1}B.{-1,0,1,2}C.{-1,0,1}D.{-2,-1,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.命题p:若a<b,则?c∈R,ac2<bc2;命题q:?x0>0,使得x0-1+lnx0=0,则下列命题为真命题的是(  )
A.p∧qB.p∨(¬q)C.(¬p)∧qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知1=x2+4y2-2xy(x<0,y<0),则x+2y的取值范围为[-2,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)=sin(x+φ)是奇函数,则φ的值可能是(  )
A.$\frac{3}{4}π$B.$\frac{1}{4}π$C.$\frac{1}{2}π$D.π

查看答案和解析>>

同步练习册答案