精英家教网 > 高中数学 > 题目详情
已知向量
m
=(-1,cosωx+
3
sinωx)
n
=(f(x),cosωx)
,其中ω>0,且
m
n
,又函数f(x)的图象任意两相邻对称轴间距为
3
2
π

(Ⅰ)求ω的值.
(Ⅱ)设α是第一象限角,且f(
3
2
α+
π
2
)=
23
26
,求
sin(α+
π
4
)
cos(π+2α)
的值.
分析:(Ⅰ)利用向量的数量积,而二倍角公式以及两角和的正弦函数,化简数量积为sin(2ωx+
π
6
)+
1
2
,利用周期求出ω的值.
(Ⅱ)设α是第一象限角,且f(
3
2
α+
π
2
)=
23
26
,化简方程为cosα=
5
13
,求出sinα=
12
13
,利用两角和的正弦函数,诱导公式化简
sin(α+
π
4
)
cos(π+2α)
并求出它的值.
解答:解:(Ⅰ)由题意得
m
n
=0

所以,f(x)=cosωx•(cosωx+
3
sinωx)=
1+cos2ωx
2
+
3
sin2ωx
2
=sin(2ωx+
π
6
)+
1
2

根据题意知,函数f(x)的最小正周期为3π,又ω>0,所以ω=
1
3


(Ⅱ)由(Ⅰ)知f(x)=sin(
2
3
x+
π
6
)+
1
2
所以f(
3
2
α+
π
2
)=sin(α+
π
2
)+
1
2
=cosα+
1
2
=
23
26

解得cosα=
5
13

因为α是第一象限角,故sinα=
12
13

所以
sin(α+
π
4
)
cos(π+2α)
=
sin(α+
π
4
)
-cos2α
=
2
-2(cosα-sinα)
=
13
14
2
点评:本题是基础题,考查向量的数量积的运算,三角函数的化简与求值,二倍角公式两角和的正弦函数公式的应用,为解题设置了障碍,细心解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(1,1)
,向量
n
与向量
m
夹角为
3
4
π
,且
m
n
=-1
,又A、B、C为△ABC的三个内角,且B=
π
3
,A≤B≤C.
(Ⅰ)求向量
n

(Ⅱ)若向量
n
与向量
q
=(1,0)
的夹角为
π
2
,向量
p
=(cosA,2cos2
C
2
)
,试求|
n
+
p
|
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(-1,sinx)
n
=(-2,cosx)
,函数f(x)=2
m
n

(1)求函数f(x)在区间[0,
π
2
]
上的最大值;
(2)若△ABC的角A、B所对的边分别为a、b,f(
A
2
)=
24
5
f(
B
2
+
π
4
)=
64
13
,a+b=11,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(λ+1,1),
n
=(λ+2,2)
,若(
m
+
n
)⊥(
m
-
n
)
⊥(
m
-
n
)
,则λ=
-3
-3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(1,cosωx),
n
=(sinωx,
3
)
(ω>0),函数f(x)=
m
n
,且f(x)图象上一个最高点为P(
π
12
,2)
,与P最近的一个最低点的坐标为(
12
,-2)

(1)求函数f(x)的解析式;
(2)设a为常数,判断方程f(x)=a在区间[0,
π
2
]
上的解的个数;
(3)在锐角△ABC中,若cos(
π
3
-B)=1
,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(-1,
3
),
n
=(cosx,sinx),f(x)=
m
n

(1)求f(x)的表达式及最小正周期;
(2)若sinθ=
4
5
,0<θ<
π
2
,求f(θ)的值.

查看答案和解析>>

同步练习册答案