【题目】函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的部分图象如图所示,将y=f(x)的图象向右平移 个单位长度后得到函数y=g(x)的图象.
(1)求函数y=g(x)的解析式;
(2)在△ABC中,角A,B,C满足2sin2 =g(C+ )+1,且其外接圆的半径R=2,求△ABC的面积的最大值.
【答案】
(1)解:由图知 =4( + ),解得ω=2,
∵f( )=sin(2× +φ)=1,
∴2× +φ=2kπ+ ,k∈Z,即φ=2kπ+ ,k∈Z,
由于|φ|< ,因此φ= ,
∴f(x)=sin(2x+ ),
∴f(x﹣ )=sin[2(x﹣ )+ ]=sin(2x﹣ ),
即函数y=g(x)的解析式为g(x)=sin(2x﹣ )
(2)解:∵2sin2 =g(C+ )+1,
∴1﹣cos(A+B)=1+sin(2C+ ),
∵cos(A+B)=﹣cosC,sin(2C+ )=cos2C,
cosC=cos2C,即cosC=2cos2C﹣1,
所以cosC=﹣ 或1(舍),可得:C= ,
由正弦定理得 ,解得c=2 ,
由余弦定理得cosC=﹣ = ,
∴a2+b2=12﹣ab≥2ab,ab≤4,(当且仅当a=b等号成立),
∴S△ABC= absinC= ab≤ ,
∴△ABC的面积最大值为
【解析】(1)由图知周期T,利用周期公式可求ω,由f( )=1,结合范围|φ|< ,可求φ的值,进而利用三角函数图象变换的规律即可得解.(2)利用三角函数恒等变换的应用及三角形内角和定理化简已知可得cosC=﹣ ,进而可求C,由正弦定理解得c的值,进而由余弦定理,基本不等式可求ab≤4,利用三角形面积公式即可得解面积的最大值.
【考点精析】认真审题,首先需要了解正弦定理的定义(正弦定理:).
科目:高中数学 来源: 题型:
【题目】设f(n)=(1+ )n﹣n,其中n为正整数.
(1)求f(1),f(2),f(3)的值;
(2)猜想满足不等式f(n)<0的正整数n的范围,并用数学归纳法证明你的猜想.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(1)求这4个人中恰有2人去参加甲游戏的概率;
(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;
(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列与数学期望Eξ.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一个树形图依据下列规律不断生长:1个空心圆点到下一行仅生长出1个实心圆点,1个实心圆点到下一行生长出1个实心圆点和1个空心圆点.则第11行的实心圆点的个数是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(x+ ),x∈R,且f( )= .
(1)求A的值;
(2)若f(θ)+f(﹣θ)= ,θ∈(0, ),求f( ﹣θ).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2﹣x+2a﹣1(a>0).
(1)若f(x)在区间[1,2]为单调增函数,求a的取值范围;
(2)设函数f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式;
(3)设函数 ,若对任意x1 , x2∈[1,2],不等式f(x1)≥h(x2)恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,a,b,c分别为角A,B,C所对的边.已知sinC= sinB,c=2,cosA= .
(Ⅰ)求a的值;
(Ⅱ)求sin(2A﹣ )的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com