精英家教网 > 高中数学 > 题目详情

【题目】[选修4-4:坐标系与参数方程](10分

在极坐标系中,圆C的极坐标方程为,若以极点O为原点,极轴为x轴的正半轴建立平面直角坐标系.

(1)求圆C的一个参数方程;

(2)在平面直角坐标系中,是圆C上的动点,试求的最大值,并求出此时点P的直角坐标.

【答案】(1)是参数).

(2).

【解析】试题分析:(1)根据得到圆的直角坐标方程从而可得圆的一个参数方程;(2)由(1)可设点借助辅助角公式即可得从而可得的最大值及点的直角坐标.

试题解析(1)因为,所以,即为圆C的直角坐标方程,所以圆C的一个参数方程为为参数).

(2)由(1)可知点P的坐标可设为,则 其中,当取最大值时,此时

所以的最大值为11,此时点P的直角坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2015·湖南)如下图,直三棱柱ABCA1B1C1的底面是边长为2的正三角形,EF分别是BCCC1的中点.

(1)证明:平面AEF⊥平面B1BCC1

(2)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥FAEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要得到函数的图象,只要将函数的图象( )

A.每一点的横坐标变为原来的(纵坐标不变),再将所得图象向左平移个长度

B.每一点的横坐标变为原来的(纵坐标不变),再将所得图象向左平移个长度

C.向左平移个长度,再将所得图象每一点的横坐标变为原来的(纵坐标不变)

D.向左平移个长度,再将所得图象每一点的横坐标变为原来的(纵坐标不变)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线为参数,).

(Ⅰ)求直线的普通方程;

(Ⅱ)在曲线上求一点,使它到直线的距离最短,并求出点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区上年度电价为/kWh,年用电量为kWh.本年度计划将电价降低到055/ kWh075/ kWh之间,而用户期望电价为040/ kWh.经测算,下调电价后新增用电量与实际电价与用户的期望电价的差成反比(比例系数为),该地区电力的成本价为030/ kWh

1)写出本年度电价下调后,电力部门的收益与实际电价之间的函数关系式;

2)设=,当电价最低定为多少时仍可保证电力部门的收益比上一年至少增长20%?(注:收益=实际电量×(实际电价-成本价))

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知T是由A的子集组成的集合,满足性质:空集和属于,且任意两个元素的交和并也属于T

(1)当T的元素个数为2时,请写出所有符合条件的T.

(2)当T的元素个数为3时,请写出所有符合条件的T.

(3)求所有符合条件的T的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若在定义域内存在实数,使得成立,则称函数有“和一点”.

(1)函数是否有“和一点”?请说明理由;

(2)若函数有“和一点”,求实数的取值范围;

(3)求证:有“和一点”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABC为函数的图象上的三点,它们的横坐标分别是tt+2t+4,其中t1

.

1)设△ABC的面积为S,求Sft);

2)判断函数Sft)的单调性;

3)求Sft)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)时间经过(时),时针、分针各转了多少度?各等于多少弧度?

2)有人说,钟的时针和分针一天内会重合24次。你认为这种说法是否正确?请说明理由.

(提示:从午夜零时算起,假设分针走了t min会与时针重合,一天内分针和时针会重合n次,建立t关于n的函数解析式,并画出其图象,然后求出每次重合的时间)

查看答案和解析>>

同步练习册答案